Affiliations 

  • 1 Department of Anatomy, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
  • 2 Human Biology Division, School of Medicine, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur, Malaysia
Oxid Med Cell Longev, 2019;2019:9714302.
PMID: 31827717 DOI: 10.1155/2019/9714302

Abstract

Morinda citrifolia (Rubiaceae) or Noni was previously reported to have leaf with broad therapeutic property whereas the fruit was rarely described as medicinal. Ironically, extensive research and review has been done on the fruit and little was known about the therapeutic activity of the leaf as a medicinal food. The aim of this study was to investigate the therapeutic effects of Morinda citrifolia (MC) ethanolic leaf extract on the hepatic structure and function in postmenopausal rats fed with thermoxidized palm oil (TPO) diet. Thirty eight female Sprague Dawley rats were divided into five groups: sham (Sham), ovariectomized (OVX), ovariectomized and treated with simvastatin 10 mg/kg (OVX+ST), ovariectomized and supplemented with low dose MC 500 mg/kg (OVX+MCLD), and ovariectomized and supplemented with high dose MC 1000 mg/kg (OVX+MCHD). All the ovariectomized groups were fed with TPO diet whereas the Sham group was fed with normal diet. Consumption of TPO diet in postmenopausal rats resulted in obesity, significantly elevated (P < 0.05) liver oxidative stress marker; malondialdehyde (MDA), diffuse microvesicular steatosis, and defective mitochondria. Treatment with MC leaf extract prevented hepatic steatosis by significantly increasing (P < 0.05) the liver antioxidant enzyme SOD and GPx, significantly increasing (P < 0.05) ALP, decreasing liver lipids infiltration, preventing mitochondrial damage, and overall maintaining the normal liver histology and ultrastructure. In conclusion, we provided detailed histological and ultrastructural evidence showing hepatoprotective effects of MC leaf extract through its antioxidant mechanism.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.