Affiliations 

  • 1 Physiology Unit, Faculty of Medicine, AIMST University, Bedong, Malaysia. rajiv.pathak1172@gmail.com
  • 2 Department of Biotechnology, GGDSD College, Chandigarh, India
Biol Trace Elem Res, 2020 Aug 26.
PMID: 32851540 DOI: 10.1007/s12011-020-02356-9

Abstract

Lithium is an integral drug used in the management of acute mania, unipolar and bipolar depression, and prophylaxis of bipolar disorders. Thyroid abnormalities have been associated with treatment with lithium. Zinc is an essential trace element that plays a role in several biological activities. Therefore, the present study was aimed at investigating the potential role of zinc in the thyroid gland following lithium administration to explore the role of zinc under such conditions. To achieve this goal, male Wistar rats (150-195 g) were divided into four groups: Group 1 animals were fed standard pellet feed and tap water ad lib; Group 2 rats were fed lithium in the form of lithium carbonate through diet at a concentration of 1.1 g/kg body weight; Group 3 animals received zinc treatment in the form of zinc sulfate (ZnSO4·7H2O) at a dose level of 227 mg/L mixed with drinking water of the animals; and Group 4 animals were given lithium and zinc in a similar manner as was given to the animals belonging to groups 2 and 4 respectively. The role of zinc on thyroid functions in lithium-treated rats was studied after 2, 4, and 8 weeks of different treatments. Zinc has been observed to have the capability to nearly normalize the altered 2-h uptake of 131I, biological and effective half-lives of 131I, and circulating T4 levels that were altered after lithium treatment. The present study concludes that zinc may be an effective agent in normalizing the adverse effects caused by lithium on thyroid functions.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.