Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Mohamad NR, Buang NA, Mahat NA, Lok YY, Huyop F, Aboul-Enein HY, et al.
    Enzyme Microb Technol, 2015 May;72:49-55.
    PMID: 25837507 DOI: 10.1016/j.enzmictec.2015.02.007
    In view of several disadvantages as well as adverse effects associated with the use of chemical processes for producing esters, alternative techniques such as the utilization of enzymes on multi-walled carbon nanotubes (MWCNTs), have been suggested. In this study, the oxidative MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) were used as a supportive material for the immobilization of Candida rugosa lipase (CRL) through physical adsorption process. The resulting CRL-MWCNTs biocatalysts were utilized for synthesizing geranyl propionate, an important ester for flavoring agent as well as in fragrances. Enzymatic esterification of geraniol with propionic acid was carried out using heptane as a solvent and the efficiency of CRL-MWCNTs as a biocatalyst was compared with the free CRL, considering the incubation time, temperature, molar ratio of acid:alcohol, presence of desiccant as well as its reusability. It was found that the CRL-MWCNTs resulted in a 2-fold improvement in the percentage of conversion of geranyl propionate when compared with the free CRL, demonstrating the highest yield of geranyl propionate at 6h at 55°C, molar ratio acid: alcohol of 1:5 and with the presence of 1.0g desiccant. It was evident that the CRL-MWCNTs biocatalyst could be reused for up to 6 times before a 50% reduction in catalytic efficiency was observed. Hence, it appears that the facile physical adsorption of CRL onto F-MWCNTs has improved the activity and stability of CRL as well as served as an alternative method for the synthesis of geranyl propionate.
  2. Razali S, Firus Khan AY, Khatib A, Ahmed QU, Abdul Wahab R, Zakaria ZA
    Front Pharmacol, 2021;12:741683.
    PMID: 34721030 DOI: 10.3389/fphar.2021.741683
    The leaves of Neolamarckia cadamba (NC) (Roxb.) Bosser (family: Rubiaceae) are traditionally used to treat breast cancer in Malaysia; however, this traditional claim is yet to be scientifically verified. Hence, this study was aimed to evaluate the anticancer effect of NC leaves' ethanol extract against breast cancer cell line (MCF-7 cells) using an in vitro cell viability, cytotoxicity, and gene expression assays followed by the gas chromatography analysis to further confirm active principles. Results revealed 0.2 mg/ml as the half maximal inhibitory concentration (IC50) against MCF-7. The extract exerted anticancer effect against MCF-7 cells in a dose- and time-dependent manner. The cell cycle assay showed that the extract arrested MCF-7 cells in the G0/G1 phase, and apoptosis was observed after 72 h by the Annexin-V assay. The gene expression assay revealed that the cell cycle arrest was associated with the downregulation of CDK2 and subsequent upregulation of p21 and cyclin E. The extract induced apoptosis via the mediation of the mitochondrial cell death pathways. A chromatography analysis revealed the contribution of D-pinitol and myo-inositol as the two major bioactive compounds to the activity observed. Overall, the study demonstrated that NC leaves' ethanol extract exerts anticancer effect against MCF-7 human breast cancer cells through the induction of apoptosis and cell cycle arrest, thereby justifying its traditional use for the treatment of breast cancer in Malaysia.
  3. Zainal Ariffin SH, Mohamed Rozali NA, Megat Abdul Wahab R, Senafi S, Zainol Abidin IZ, Zainal Ariffin Z
    Cytotechnology, 2016 Aug;68(4):675-86.
    PMID: 26231833 DOI: 10.1007/s10616-014-9819-8
    Transplantation of stem cells requires a huge amount of cells, deeming the expansion of the cells in vitro necessary. The aim of this study is to define the optimal combination of basal medium and serum for the expansion of suspension peripheral blood mononucleated stem cells (PBMNSCs) without resulting in loss in the differentiation potential. Mononucleated cells were isolated from both mice and human peripheral blood samples through gradient centrifugation and expanded in α-MEM, RPMI, MEM or DMEM supplemented with either NBCS or FBS. The suspension cells were then differentiated to osteoblast. Our data suggested that α-MEM supplemented with 10 % (v/v) NBCS gives the highest fold increase after 14 days of culture for both mice and human PBMNSCs, which were ~1.51 and ~2.01 times, respectively. The suspension PBMNSCs in the respective medium were also able to maintain osteoblast differentiation potential as supported by the significant increase in ALP specific activity. The cells are also viable during the differentiated states when using this media. All these data strongly suggested that α-MEM supplemented with 10 % NBCS is the best media for the expansion of both mouse and human suspension PBMNSCs.
  4. Roslan M, Mohd Nisfu FR, Arzmi MH, Abdul Wahab R, Zainuddin N
    Malays J Med Sci, 2023 Aug;30(4):8-24.
    PMID: 37655145 DOI: 10.21315/mjms2023.30.4.2
    Individuals with a history of coronavirus disease 2019 (COVID-19) exhibit memory immunity acquired during natural infection. However, a decline in immunity after infection renders these individuals vulnerable to re-infection, in addition to a higher risk of infection with new variants. This systematic review examined related studies to elucidate the antibody response in these infected individuals after messenger ribonucleic acid (mRNA) vaccination. Hence, the focus of this review was to ascertain differences in the concentration of binding and neutralising antibodies of previously infected individuals in comparison to those of infection-naïve individuals after administration of two doses of mRNA vaccination through available case-control and cohort studies. Positive reverse transcriptase-polymerase chain reaction (RT-PCR) test or detectable anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies at the baseline in included studies showed categorisation of infected and uninfected individuals. This review utilised three online databases: PubMed, Scopus and Cochrane with the following keywords: (COVID-19 OR 'Coronavirus Disease 2019' OR SARS-CoV-2) AND Immun* AND (Pfizer OR BioNTech OR BNT162b2 OR Comirnaty OR Moderna OR mRNA-1273) from January 2019 to July 2021. Following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol (PRISMA-P) 2020 guidelines and assessment based on the Crowe Critical Appraisal Tool (CCAT), we included 13 related qualified papers of observational studies discerning the binding and neutralising antibody concentrations of infected and uninfected individuals after administration of mRNA vaccines, such as the BNT162b2 and mRNA-1273 vaccine. The mRNA vaccines induced robust binding and neutralising antibody responses in both groups. However, infected individuals showed induction of higher antibody responses in a shorter time compared to uninfected individuals. Hence, a single dose of mRNA vaccination for infected individuals may be sufficient to reach the same level of antibody concentration as that observed in uninfected individuals after receiving two doses of vaccination.
  5. Aziee, S., Haiyuni, MY, Shafini, MY, Johan, MF, Al-Jamal, HAN, Abdul Wahab, R., et al.
    MyJurnal
    The aims of the study were to investigate the anti-cancer effects of 5-
    Aza and TSA in two leukemic cell lines (CCRF-CEM and HL-60). Inhibition
    concentration of 5-Aza and TSA were measured using trypan blue exclusion
    assay. 5-Aza and TSA at IC50 were treated to both CCRF-CEM and HL-60 cell
    lines for 4-6 days. To confirm the inhibition effects of these agents, Annexin-V
    stained cells were analyzed using flow cytometry to evaluate the apoptotic
    induction. The IC50 values of CCRF-CEM were 2.01±0.1µM and 2.65±0.3µM for
    5-Aza- and TSA-treated, respectively. Whereas, the IC50 values of HL-60 were
    1.98±0.2µM and 2.35±0.2µM for 5-Aza- and TSA-treated, respectively. To
    further substantiate the findings, the time-dependent exposure of both drugs was
    studied. CCRF-CEM cells were reduced to 49.4%±5.0, 49.4%±2.5 and
    41.5%±5.6 by 5-Aza; 56.5%±7.0, 45.3%±4.2 and 40.2%±4.2 by TSA treatment
    at first, third and sixth day. HL-60 cells were reduced to 72.0%±4.5, 51.0%±1.5
    and 40.6%±2.6 by 5-Aza at first, third and sixth day. Meanwhile, HL-60 cells
    reduced to 55.6%±4.5, 45.2%±4.0 and 36.3%±2.9 by TSA at first, second and
    fourth day. Both cell lines were significantly inhibited (p
  6. Mikail MA, Ahmed IA, Ibrahim M, Hazali N, Abdul Rasad MS, Abdul Ghani R, et al.
    Eur J Nutr, 2016 Jun;55(4):1435-44.
    PMID: 26091909 DOI: 10.1007/s00394-015-0961-7
    PURPOSE: The consequence of the increased demand due to the population expansion has put tremendous pressure on the natural supply of fruits. Hence, there is an unprecedented growing interest in the exploration of the potentials of underutilized fruits as alternatives to the commercially available fruits. Baccaurea angulata is an underutilized fruit widely distributed in Borneo Island of Malaysia. The present study was conducted to investigate the effects of B. angulata whole fruit (WF), skin (SK) and pulp (PL) juices on malondialdehyde (MDA) levels and antioxidant enzymes in rabbits fed high-cholesterol diet.

    METHODS: Thirty-six male rabbits of New Zealand strain were randomly assigned to six groups. Rabbits were fed either a standard pellet (group NC) or a high-cholesterol diet (groups HC, PC, WF, SK and PL). Groups WF, SK and PL were also given 1 ml/kg/day B. angulata WF, SK and PL juices, respectively.

    RESULTS: Baccaurea angulata had high antioxidant activities. The administration of the various juices significantly reduced (p 

  7. Abdul Keyon AS, Miskam M, Ishak NS, Mahat NA, Mohamed Huri MA, Abdul Wahab R, et al.
    J Sep Sci, 2019 Feb;42(4):906-924.
    PMID: 30605233 DOI: 10.1002/jssc.201800859
    Depression is a common mental disorder that may lead to major mental health problems, and antidepressant drugs have been used as a treatment of choice to mitigate symptoms of major depressive disorders by ameliorating the chemical imbalances of neurotransmitters in brain. Since abusing antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressant drugs can cause severe adverse effects, continuous toxicological monitoring of the parent compounds as well as their metabolites using numerous analytical methods appears pertinent. Among them, capillary electrophoresis has been popularly utilized since the method has a lot of advantages viz. using small amounts of sample and solvents, ease of operation, and rapid analysis. This review paper brings a survey of more than 30 papers on capillary electrophoresis of antidepressant drugs published approximately from 1999 until 2018. It focuses on the reported capillary electrophoresis techniques and their applications and challenges for determining antidepressant drugs and their metabolites. It is organized according to the commonly used capillary zone electrophoresis method, followed by non-aqueous capillary electrophoresis and micellar electrokinetic chromatography, with details on breakthrough findings. Where available, information is given about the background electrolyte used, detector utilized, and sensitivity obtained.
  8. Zainal Ariffin SH, Yamamoto Z, Zainol Abidin IZ, Megat Abdul Wahab R, Zainal Ariffin Z
    ScientificWorldJournal, 2011;11:1788-803.
    PMID: 22125437 DOI: 10.1100/2011/761768
    Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment.
  9. Ab Kadir R, Zainal Ariffin SH, Megat Abdul Wahab R, Kermani S, Senafi S
    ScientificWorldJournal, 2012;2012:843843.
    PMID: 22666162 DOI: 10.1100/2012/843843
    Unspecialized cells that can renew themselves and give rise to multiple differentiated cell types are termed stem cells. The objective of this study was to characterize and investigate, through molecular and biochemical analyses, the stemness of cells derived from isolated mononucleated cells that originated from peripheral blood. The isolated mononucleated cells were separated according to their physical characteristics (adherent and suspension), after 4 to 7 days into a 14-day culturing period in complete medium. Our results revealed that adherent and suspension cells were positive for mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) markers, respectively. Differentiation of adherent cells into osteoblasts was associated with expression of the OPN gene and increasing ALP enzyme activity, while differentiation of suspension cells into osteoclasts was associated with expression of the TRAP gene and increasing TRAP enzyme activity. In conclusion, molecular and biochemical analyses showed that mononucleated cells consist of MSC (adherent) and HSC (suspension), and both cell types are able to differentiate into specialized cells from their respective lineage: osteoblast (MSC) and osteoclast (HSC).
  10. Basri KN, Yazid F, Megat Abdul Wahab R, Mohd Zain MN, Md Yusof Z, Zoolfakar AS
    PMID: 34634732 DOI: 10.1016/j.saa.2021.120464
    Caries is one of the non-communicable diseases that has a high prevalence trend. The current methods used to detect caries require sophisticated laboratory equipment, professional inspection, and expensive equipment such as X-ray imaging device. A non-invasive and economical method is required to substitute the conventional methods for the detection of caries. UV absorption spectroscopy coupled with chemometrics analysis has emerged as a good potential candidate for such an application. Data preprocessing methods such as mean centre, autoscale and Savitzky-Golay smoothing were implemented to enhance the signal-to-noise ratio of spectra data. Various classification algorithms namely K-nearest neighbours (KNN), logistic regression (LR) and linear discriminant analysis (LDA) were implemented to classify the severity of dental caries into International Caries Detection and Assessment System (ICDAS) scores. The performance of the prediction model was measured and comparatively analysed based on the accuracy, precision, sensitivity, and specificity. The LDA algorithm combined with the Savitzky-Golay preprocessing method had shown the best result with respect to the validation data accuracy, precision, sensitivity and specificity, where each had values of 0.90, 1.00, 0.86 and 1.00 respectively. The area under the curve of the ROC plot computed for the LDA algorithm was 0.95, which indicated that the prediction algorithm was capable of differentiating normal and caries teeth excellently.
  11. Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F
    PeerJ, 2022;10:e13356.
    PMID: 35529494 DOI: 10.7717/peerj.13356
    BACKGROUND: The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration.

    METHOD: In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation.

    RESULTS: MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p 

  12. Megat Abdul Wahab R, Md Dasor M, Senafi S, Abang Abdullah AA, Yamamoto Z, Jemain AA, et al.
    Int J Dent, 2013;2013:245818.
    PMID: 23737787 DOI: 10.1155/2013/245818
    Purpose. This study is aimed to compare the effects of two different orthodontic forces on crevicular alkaline phosphatase activity, rate of tooth movement, and root resorption. Materials and Methods. Twelve female subjects of class II division 1 malocclusion participated. Maxillary canines with bonded fixed appliances acted as the tested teeth, while their antagonists with no appliances acted as the controls. Canine retraction was performed using nickel titanium coil spring that delivered forces of 100 gm or 150 gm to either side. Crevicular fluid was analyzed for ALP activity, and study models were casted to measure tooth movements. Root resorption was assessed using periapical radiographs before and after the force application. Results. ALP activity at the mesial sites peaked at week 1 for 150 gm group with significant differences when compared with the 100 gm group. Cumulative canine movements were significantly greater in the 150 gm force (2.10 ± 0.50 mm) than in the 100 gm force (1.57 ± 0.44 mm). No root resorption was in the maxillary canines after retraction. Conclusions. A force of 150 gm produced faster tooth movements and higher ALP activity compared with the 100 gm group and had no detrimental effects such as root resorption.
  13. Hassan A, Numin MS, Jumbri K, Kee KE, Borhan N, Nik Mohamed Daud NMR, et al.
    ACS Omega, 2023 Jul 04;8(26):23945-23952.
    PMID: 37426258 DOI: 10.1021/acsomega.3c02435
    Several new possible biobased corrosion inhibitors derived from fatty hydrazide derivatives were analyzed using quantum chemical calculations via the density functional theory method to investigate the chemical reactivity and inhibition efficiencies against corrosion in metal steel. The study confirmed that the fatty hydrazides showed significant inhibitive performances based on their electronic properties, revealing band gap energies of 5.20 to 7.61 eV between the HOMO and LUMO. These energy differences decreased from 4.40 to 7.20 eV when combined with substituents of varying chemical compositions, structures, and functional groups, associated with higher inhibition efficiency. The most promising fatty hydrazide derivatives are terephthalic acid dihydrazide combined with a long-chain alkyl chain, which resulted in the lowest energy difference of 4.40 eV. Further inspection showed that the fatty hydrazide derivatives' inhibitive performances increased with increasing carbon chain length [from 4 (4-s-4) to 6 (6-s-6)], with a concomitant increase and decrease in hydroxyl and carbonyl groups, respectively. Fatty hydrazide derivatives containing aromatic rings also showed increased inhibition efficiencies following their contribution to improve the compounds' binding ability and adsorption on the metal surface. Overall, all data were consistent with previously reported findings, envisaging the potential of fatty hydrazide derivatives as effective corrosion inhibitors.
  14. Nordin NH, Ahmad UK, Abdul Rahim NA, Kamaluddin MR, Ismail D, Muda NW, et al.
    Trop Biomed, 2020 Jun 01;37(2):333-356.
    PMID: 33612803
    In addition to the scarcity of forensic entomology baseline data on oviposition of necrophagous insects and completion of their life cycles in the Borneo region, similar data derived from caves remain unreported. Since entomological baseline data can differ from one biogeoclimatic region to another, the lack of such data would limit the practical values of applying entomological evidence in estimating minimum postmortem interval (mPMI). Therefore, this present research that investigated oviposition and completion of life cycles of necrophagous flies infesting rabbit carcasses decomposing in Mount Kapur Cave and its surrounding forest habitat in Kuching, Sarawak merits forensic consideration. In general, 13 taxa of necrophagous flies were identified viz. Hypopygiopsis violacea, Hypopygiopsis fumipennis, Hemipyrellia ligurriens, Hemipyrellia tagaliana, Chrysomya megacephala, Chrysomya villeneuvi, Chrysomya rufifacies, Chrysomya chani, Chrysomya pinguis, Chrysomya nigripes, Ophyra spinigera and Ophyra chalcogaster, as well as unidentified Sarcophagidae. In addition, Hyp. violacea and Hyp. fumipennis were the two earlier necrophagous flies that oviposited in all rabbit carcasses decomposing in both habitats. While all these necrophagous flies were observed infesting carcasses in Mount Kapur Cave, Hem. ligurriens and Hem. tagaliana were not found infesting carcasses in the surrounding forest habitat. Complete life cycles for six and five different necrophagous fly species were successfully observed in Mount Kapur Cave and its surrounding forest habitat, respectively. Significant delay in oviposition, as well as longer durations for completing the life cycles in several necrophagous fly species were observed in Mount Kapur Cave when compared with those of surrounding forest habitat (p < 0.05). These findings deserve consideration as the first ever forensic empirical baseline data on oviposition and completion of life cycles for necrophagous flies in Sarawak as well as in a cave habitat, in view of its practical values for estimating mPMI for forensic practical caseworks.
  15. Kermani S, Megat Abdul Wahab R, Zarina Zainol Abidin I, Zainal Ariffin Z, Senafi S, Hisham Zainal Ariffin S
    Cell J, 2014 Feb 3;16(1):31-42.
    PMID: 24518973
    Our research attempted to show that mouse dental pulp stem cells (DPSCs) with characters such as accessibility, propagation and higher proliferation rate can provide an improved approach for generate bone tissues. With the aim of finding and comparing the differentiation ability of mesenchymal stem cells derived from DPSCs into osteoblast and osteoclast cells; morphological, molecular and biochemical analyses were conducted.
  16. Zainal Ariffin SH, Kermani S, Zainol Abidin IZ, Megat Abdul Wahab R, Yamamoto Z, Senafi S, et al.
    Stem Cells Int, 2013;2013:250740.
    PMID: 24348580 DOI: 10.1155/2013/250740
    Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146(+) , Cd166(+) , and Cd31(-) in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.
  17. Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F
    Molecules, 2020 Jul 08;25(14).
    PMID: 32650572 DOI: 10.3390/molecules25143129
    A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
  18. Jalal TK, Ahmed IA, Mikail M, Momand L, Draman S, Isa ML, et al.
    Appl Biochem Biotechnol, 2015 Apr;175(7):3231-43.
    PMID: 25649443 DOI: 10.1007/s12010-015-1499-0
    Artocarpus altilis (breadfruit) pulp, peel and whole fruit were extracted with various solvents such as hexane, dichloromethane (DCM) and methanol. The antioxidant activity of these extracts were examined using the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test. IC50 was 55 ± 5.89 μg/ml for the pulp part of methanol extract. In the β-carotene bleaching assay, the antioxidant activity was 90.02 ± 1.51 % for the positive control (Trolox) and 88.34 ± 1.31 % for the pulp part of the fruit methanol extract. The total phenolic content of the crude extracts was determined using the Folin-Ciocalteu procedure; methanol pulp part demonstrated the highest phenol content value of 781 ± 52.97 mg GAE/g of dry sample. While the total flavonoid content was determined using the aluminium chloride colorimetric assay, the highest value of 6213.33 ± 142.22 mg QE/g was indicated by pulp part of the fruit methanol extract. The antimicrobial activity of the crude extracts was tested using disc diffusion method against pathogenic microorganisms: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia and Candida albicans. Methanol extract of pulp part was recorded to have the highest zone of inhibition against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) and MBC/minimal fungicidal concentration (MFC) for the extracts were also determined using the microdilution method ranging from 4000 to 63 μg/ml against pathogenic microbes. The MBC/MFC values varied from 250 to 4000 μg/ml. A correlation between antioxidant activity assays, antimicrobial activity and phenolic content was established. The results shows that the various parts of A. altilis fruit extracts promising antioxidant activities have potential bioactivities due to high content of phenolic compounds.
  19. Syed Yaacob SN, Huyop F, Misson M, Abdul Wahab R, Huda N
    PeerJ, 2022;10:e13053.
    PMID: 35345581 DOI: 10.7717/peerj.13053
    BACKGROUND: Honey produced by Heterotrigona itama is highly preferred among consumers due to its high-value as a functional food and beneficial lactic acid bacteria (LAB) reservoir. Fructophilic lactic acid bacteria (FLAB) are a group of LAB with unique growth characteristics and are regarded as promising producers of bioactive compounds. Hence, it is not surprising that LAB, especially FLAB, may be involved with the excellent bioactivity of H. itama honey. With the trending consumer preference for H. itama honey coupled with increasing awareness for healthy food, the genomic background of FLAB isolated from this honey must, therefore, be clearly understood. In this study, one FLAB strain designated as Sy-1 was isolated from freshly collected H. itama honey. Its FLAB behavior and genomic features were investigated to uncover functional genes that could add value to functional food.

    METHODS: The fructophilic characteristics of strain Sy-1 were determined, and the genome was sequenced using Illumina iSeq100 and Oxford Nanopore. The average nucleotide identity and phylogenetic analyses based on 16S rRNA, 92 core genes, and whole-genome sequence were performed to unravel the phylogenetic position of strain Sy-1. NCBI Prokaryotic Genome Annotation Pipeline annotated the genome, while the EggNOG-mapper, BLASTKoala, and GHOSTKoala were used to add functional genes and pathways information.

    RESULTS: Strain Sy-1 prefers D-fructose over D-glucose and actively metabolizes D-glucose in the presence of electron acceptors. Genomic annotation of strain Sy-1 revealed few genes involved in carbohydrate transport and metabolism, and partial deletion of adhE gene, in line with the characteristic of FLAB. The 16S rRNA gene sequence of strain Sy-1 showed the highest similarity to unknown LAB species isolated from the gut of honeybees. The phylogenetic analyses discovered that strain Sy-1 belonged to the Lactobacillaceae family and formed a separate branch closer to type strain from the genera of Acetilactobacillus and Apilactobacillus. The ANI analysis showed the similarity of the closest relative, Apilactobacillus micheneri Hlig3T. The assembled genome of Sy-1 contains 3 contigs with 2.03 Mbp and a 41% GC content. A total of 1,785 genes were identified, including 1,685 protein-coding genes, 68 tRNA, and 15 rRNA. Interestingly, strain Sy-1 encoded complete genes for the biosynthesis of folate and riboflavin. High-performance liquid chromatography analysis further confirmed the high production of folic acid (1.346 mg/L) by Sy-1.

    DISCUSSION: Based on phylogenetic and biochemical characteristics, strain Sy-1 should be classified as a novel genus in the family of Lactobacillaceae and a new member of FLAB. The genome information coupled with experimental studies supported the ability of strain Sy-1 to produce high folic acid. Our collective findings support the suitable application of FLAB strain Sy-1 in the functional food and pharmaceutical industries.

  20. Abdul Wahab R, Basri M, Raja Abdul Rahman RN, Salleh AB, Abdul Rahman MB, Leow TC
    Enzyme Microb Technol, 2016 Nov;93-94:174-181.
    PMID: 27702478 DOI: 10.1016/j.enzmictec.2016.08.020
    Site-directed mutagenesis of the oxyanion-containing amino acid Q114 in the recombinant thermophilic T1 lipase previously isolated from Geobacillus zalihae was performed to elucidate its role in the enzyme's enantioselectivity and reactivity. Substitution of Q114 with a hydrophobic methionine to yield mutant Q114M increased enantioselectivity (3.2-fold) and marginally improved reactivity (1.4-fold) of the lipase in catalysing esterification of ibuprofen with oleyl alcohol. The improved catalytic efficiency of Q114L was concomitant with reduced flexibility in the active site while the decreased enantioselectivity of Q114L could be directly attributed to diminished electrostatic repulsion of the substrate carboxylate ion that rendered partial loss in steric hindrance and thus enantioselectivity. The highest E-values for both Q114L (E-value 14.6) and Q114M (E-value 48.5) mutant lipases were attained at 50°C, after 12-16h, with a molar ratio of oleyl alcohol to ibuprofen of 1.5:1 and at 2.0% (w/v) enzyme load without addition of molecular sieves. Pertinently, site-directed mutagenesis on the Q114 oxyanion of T1 resulted in improved enantioselectivity and such approach may be applicable to other lipases of the same family. We demonstrated that electrostatic repulsion phenomena could affect flexibility/rigidity of the enzyme-substrate complex, aspects vital for enzyme activity and enantioselectivity of T1.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links