Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Kurniawan SB, Imron MF, Chik CENCE, Owodunni AA, Ahmad A, Alnawajha MM, et al.
    Sci Total Environ, 2022 Feb 01;806(Pt 4):150902.
    PMID: 34653447 DOI: 10.1016/j.scitotenv.2021.150902
    Biocoagulants and bioflocculants are alternative items that can be used to substitute the utilization of common-chemical coagulants and flocculants. Biocoagulants/bioflocculants can be extracted from animals, microorganisms, and plants. Moreover, biocoagulants/bioflocculants have specific characteristics that contribute to the coagulation and flocculation processes. The active compounds inside biocoagulants/bioflocculants vary and correspond to the specific working mechanisms, including charge neutralization, sweep coagulation, adsorption, bridging, and patch flocculation. This review paper summarizes the characteristics of biocoagulants/bioflocculants from different sources and its performance in treating various pollutants. Furthermore, this paper discusses the most contributing compounds and functional groups of biocoagulants/bioflocculants that can be related to their working mechanisms. Several functional groups and compounds in biocoagulants/bioflocculants are highlighted in this review article, as well as the correlation between the highlighted groups/compounds to the aforementioned coagulation-flocculation mechanisms. In addition, current knowledge gaps in the study of biocoagulants/bioflocculants and future approaches that may serve as research directions are also emphasized. This review article is expected to shed information on the characteristics of biocoagulants/bioflocculants, which may then become a focus in the optimization to obtain higher performance in future application of coagulation-flocculation processes.
  2. Titah HS, Halmi MIEB, Abdullah SRS, Hasan HA, Idris M, Anuar N
    Int J Phytoremediation, 2018 Jun 07;20(7):721-729.
    PMID: 29723047 DOI: 10.1080/15226514.2017.1413337
    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.
  3. Al-Baldawi IA, Abdullah SRS, Almansoory AF, Ismail N', Hasan HA, Anuar N
    Sci Rep, 2020 08 19;10(1):13980.
    PMID: 32814793 DOI: 10.1038/s41598-020-70740-5
    In the present study, the potential of Salvinia molesta for biodecolorization of methyl orange (MO) dye from water was examined. Six glass vessels were filled with 4 L of water contaminated with MO with three concentrations (5, 15, and 25 mg/L), three with plants and another three without plant as contaminant control. The influence of operational parameters, including initial dye concentration, pH, temperature, and plant growth, on the efficacy of the biodecolorization process by S. molesta was determined. Temperature and pH was in the range of 25-26 °C and 6.3 to 7.3, respectively. Phytotransformation was monitored after 10 days through Fourier transform infrared (FTIR) spectroscopy, and a significant variation in the peak positions was demonstrated when compared to the control plant spectrum, indicating the adsorption of MO. The highest biodecolorization was 42% in a 5 mg/L MO dye concentration at pH 7.3 and at 27 °C. According to the FTIR results, a potential method for the biodecolourization of MO dye by S. molesta was proven. Salvinia molesta can be successfully used for upcoming eco-friendly phytoremediation purposes for dye removal.
  4. Oginawati K, Susetyo SH, Rosalyn FA, Kurniawan SB, Abdullah SRS
    Environ Sci Pollut Res Int, 2021 Mar;28(11):14000-14008.
    PMID: 33201502 DOI: 10.1007/s11356-020-11590-6
    Chromium (Cr) is used as a mixture to improve strength and corrosion resistance. Milling and welding processes can expose workers to Cr through dermal exposure and inhalation. Cr exposure can be determined by urine testing. The purpose of this study was to analyze the concentration of Cr in urine (UCr) of workers. This study was carried out using a cross-sectional method. Sampling was conducted in the village of Mekarmaju, Bandung, Indonesia. The number of respondents included 30 blacksmiths, and the control group comprised 10 people who were not blacksmiths. Cr6+ exposure was measured using a personal sampling pump placed on the collar of the worker's shirt as a breathing zone and then analyzed using a UV-visible spectrophotometer. UCr was measured with a graphite furnace atomic absorption spectrophotometer. The measured Cr6+ concentration in the exposed working area ranged from 0.03 to 0.63 mg/m3, whereas that in non-exposed area ranged from 0.02 to 0.04 mg/m3. Results showed that 16 out of 30 blacksmiths had a UCr concentration above the biological exposure index (BEI) value, 21 had a higher value than the threshold limit value (TLV), and 22 had hazard index (HI) values > 1, which indicated that Cr has a hazardous potential in the body. The analysis of the exposed and control groups showed a significant difference with a p value of 0.000 for TLV, chronic daily intake, and UCr. These results clearly showed that Cr6+ exposure may harm the health of these workers in the future. The results obtained in this study can be used to promote workers' awareness on the potential health risk caused by Cr6+ exposure in the working environment.
  5. Allamin IA, Halmi MIE, Yasid NA, Ahmad SA, Abdullah SRS, Shukor Y
    Sci Rep, 2020 Mar 05;10(1):4094.
    PMID: 32139706 DOI: 10.1038/s41598-020-60668-1
    Most components of petroleum oily sludge (POS) are toxic, mutagenic and cancer-causing. Often bioremediation using microorganisms is hindered by the toxicity of POS. Under this circumstance, phytoremediation is the main option as it can overcome the toxicity of POS. Cajanus cajan a legume plant, was evaluated as a phyto-remediating agent for petroleum oily sludge-spiked soil. Culture dependent and independent methods were used to determine the rhizosphere microorganisms' composition. Degradation rates were estimated gravimetrically. The population of total heterotrophic bacteria (THRB) was significantly higher in the uncontaminated soil compared to the contaminated rhizosphere soil with C. cajan, but the population of hydrocarbon-utilizing bacteria (HUB) was higher in the contaminated rhizosphere soil. The results show that for 1 to 3% oily sludge concentrations, an increase in microbial counts for all treatments from day 0 to 90 d was observed with the contaminated rhizosphere CR showing the highest significant increase (p  
  6. Almansoory AF, Idris M, Abdullah SRS, Anuar N, Kurniawan SB
    Chemosphere, 2021 Apr;269:128760.
    PMID: 33162166 DOI: 10.1016/j.chemosphere.2020.128760
    The greenhouse phytotoxicity experiment was conducted to analyse and assess the capability of Scirpus mucronatus (L.) in tolerating and removing petrol in contaminated soil. This research was conducted for 72 days by using 5, 10 and 30 g/kg petrol as soil contaminants. Results showed that the system planted with S. mucronatus (L.) had high potential to treat the 10 g/kg petrol-contaminated soil and had an average Total Petroleum Hydrocarbon (TPH) removal of 82.1%. At 5 and 30 g/kg petrol, the planted system removed 74.9% and 75.8% TPH, respectively. The petrol (10 g/kg) affected the plant growth positively, which was indicated by the increase in dry and wet weights throughout the research period. The removal of the TPH in the system was performed because of the interaction of plants and rhizobacteria. SEM showed that a high concentration of petrol (30 g/kg) affected the plant tissue negatively, as indicated by the altered structures of the root and stem cells. EDX results also confirmed that petrol was absorbed by the plant, as shown by the increased carbon content in the plant's root and stem after the treatment.
  7. Al-Baldawi IA, Yasin SR, Jasim SS, Abdullah SRS, Almansoory AF, Ismail N'
    Heliyon, 2022 Nov;8(11):e11456.
    PMID: 36406685 DOI: 10.1016/j.heliyon.2022.e11456
    Phytoremediation is an eco-friendly biotechnology with low costs. The removal of copper (Cu) from polluted water by the two floating plant species Azolla filiculoides and Lemna minor was observed and recorded. Plants were exposed to different Cu (II) concentration (0.25-1.00 mg/L) and sampling time (Days 0, 1, 2, 5 and 7). Both plants can remove Cu at 1.00 mg Cu/L water, with the highest removal rates of 100% for A. filiculoides and 74% for L. minor on the fifth day of exposure. At the end of the exposure period (Day 7), the growth of A. filiculoides exposed to 1.00 mg Cu/L was inhibited by Cu, but the structure of the inner cells of A. filiculoides was well organized as compared to the initial treatment period. Regarding L. minor, Cu at 1.00 mg/L negatively impacted both the growth and morphology (shrinking of its inner structure) of this plant. This is due to the higher accumulation of Cu in L. minor (2.86 mg/g) than in A. filiculoides (1.49 mg/g). Additionally, the rate of Cu removal per dry mass of plant fitted a pseudo-second order model for both plants, whereas the adsorption equilibrium data fitted the Freundlich isotherm, indicating that Cu adsorption occurs in multiple layers. Based on the results, both species can be applied in the phytoremediation of Cu-polluted water.
  8. Ahmad A, Abdullah SRS, Hasan HA, Othman AR, Ismail N'
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2579-2587.
    PMID: 34374006 DOI: 10.1007/s11356-021-15541-7
    The performance of local plants was tested using synthetic turbid water resembling real wastewater by measuring their ability to remove turbidity. The selected plants were A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta, P. sarmentosum, and M. malabathricum which can easily be found locally. The experiment was run based on coagulant dosages varied from 0 to 10 g/L for each plant with a rapid mixing speed at 180 rpm for 3 min, slow mixing speed at 10 rpm for 20 min, and settling time for 30 min. The results demonstrated that each plant has been capable of reducing turbidity by different amounts, with an increase in the coagulant dosage. The optimum coagulant dosages achieved for A. indica, S. palustris, S. polyanthum, and D. linearis were 10 g/L with turbidity removal at 26.9%, 24.9%, 24.9%, and 17.5%, respectively. P. sarmentosum and M. esculenta attained optimum coagulant dosages at 5 g/L with turbidity removal at 24.2% and 22.2%, and lastly M. malabathricum at 0.1 g/L (12.2%). P. sarmentosum was suggested to the best natural coagulant which achieved the highest removal of turbidity with a low dosage used.
  9. Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN
    Chemosphere, 2020 May;247:125932.
    PMID: 32069719 DOI: 10.1016/j.chemosphere.2020.125932
    Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.
  10. Al-Mansoory AF, Idris M, Abdullah SRS, Anuar N
    Environ Sci Pollut Res Int, 2017 May;24(13):11998-12008.
    PMID: 26330312 DOI: 10.1007/s11356-015-5261-5
    Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.
  11. Fitriani N, Kusuma MN, Wirjodirdjo B, Hadi W, Hermana J, Ni'matuzahroh, et al.
    Heliyon, 2020 Sep;6(9):e04967.
    PMID: 33015386 DOI: 10.1016/j.heliyon.2020.e04967
    In a slow sand filter, a biological layer consisting of alluvial mud and various types of microorganisms grows and attaches to the sand media and forms a matrix called schmutzdecke. Changes to several factors, including the quality of raw water, filtration speed, and the addition of media, affect the performance of the slow sand filter unit in producing treated water. Geotextiles can be equipped to improve the performance of a slow sand filter in removing pollutants. The selection of several factors that affect slow sand filter performance can be used as a starting point for the engineering system to determine the best pattern of performance behavior. This approach was carried out by looking at the dynamic behavior patterns of slow sand filter system performance in treating raw water. This research has not yet been conducted extensively. The dynamic behavior pattern approach to the performance of the slow sand filter unit was used to obtain the behavior model for the schmutzdecke layer on the filter. The system dynamic approach focused on treatment scenarios that can determine the behavior of the slow sand filter system. Several factors were assessed, including temperature, turbidity, nutrient concentration, algal concentration, bacteria and dissolved oxygen. Model simulation results show that the comparison of C: N: P values affected the performance of the schmutzdecke layer in removing total coli. The slow sand filter unit was capable of producing treated water with a total amount of coli equal to 0 on the C: N: P values of 85: 5.59: 1.25, respectively, and a 9 cm geotextile thickness.
  12. Fitriani N, Theresia L, O'Marga TTN, Kurniawan SB, Supriyanto A, Abdullah SRS, et al.
    Heliyon, 2023 Dec;9(12):e22577.
    PMID: 38046171 DOI: 10.1016/j.heliyon.2023.e22577
    The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p  0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.
  13. Ramli NN, Othman AR, Kurniawan SB, Abdullah SRS, Hasan HA
    Microbiol Res, 2023 Mar;268:127288.
    PMID: 36571921 DOI: 10.1016/j.micres.2022.127288
    Heavy metal wastes, particularly hexavalent chromium [Cr(VI)], are generated from anthropogenic activities, and their increasing abundance has been a research concern due to their toxicity, genotoxicity, carcinogenicity and mutagenicity. Exposure to these dangerous pollutants could lead to chronic infections and even mortality in humans and animals. Bioremediation using microorganisms, particularly bacteria, has gained considerable interest because it can remove contaminants naturally and is safe to the surrounding environment. Bacteria, such as Pseudomonas putida and Bacillus subtilis, can reduce the toxic Cr(VI) to the less toxic trivalent chromium Cr(III) through mechanisms including biotransformation, biosorption and bioaccumulation. These mechanisms are mostly linked to chromium reductase and nitroreductase enzymes, which are involved in the Cr(VI) reduction pathway. However, relevant data on the nitroreductase route remain insufficient. Thus, this work proposes an alternative metabolic pathway of nitroreductase, wherein nitrate activates the reaction and indirectly reduces toxic chromium. This nitroreductase pathway occurs concurrently with the chromium reduction pathway.
  14. Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Latif MT, et al.
    Heliyon, 2023 Nov;9(11):e21737.
    PMID: 38027659 DOI: 10.1016/j.heliyon.2023.e21737
    Phytoremediation is one of the green technologies that is friendly to nature, utilizes fewer chemicals, and exhibits good performance. In this study, phytoremediation was used to treat diesel-contaminated sand using a local aquatic plant species, Scirpus mucronatus, by analyzing the amount of total petroleum hydrocarbons (TPHs). Optimization of diesel removal was performed according to Response Surface Methodology (RSM) using Box-Behnken Design (BBD) under pilot-scale conditions. The quadratic model showed the best fit to describe the obtained data. Actual vs. predicted values from BBD showed a total of 9.1 % error for the concentration of TPH in sand and 0 % error for the concentration of TPH in plants. Maximum TPH removal of 42.3 ± 2.1 % was obtained under optimized conditions at a diesel initial concentration of 50 mg/kg, an aeration rate of 0.48 L/min, and a retention time of 72 days. The addition of two species of rhizobacteria (Bacillus subtilis and Bacillus licheniformis) at optimum conditions increased the TPH removal to 51.9 ± 2.6 %. The obtained model and optimum condition can be adopted to treat diesel-contaminated sand within the same TPH range (50-3000 mg/kg) in sand.
  15. Kurniawan SB, Ahmad A, Said NSM, Imron MF, Abdullah SRS, Othman AR, et al.
    Sci Total Environ, 2021 Oct 10;790:148219.
    PMID: 34380263 DOI: 10.1016/j.scitotenv.2021.148219
    Macrophytes have been widely used as agents in wastewater treatment. The involvement of plants in wastewater treatment cannot be separated from wetland utilization. As one of the green technologies in wastewater treatment plants, wetland exhibits a great performance, especially in removing nutrients from wastewater before the final discharge. It involves the use of plants and consequently produces plant biomasses as treatment byproducts. The produced plant biomasses can be utilized or converted into several valuable compounds, but related information is still limited and scattered. This review summarizes wastewater's nutrient content (macro and micronutrient) that can support plant growth and the performance of constructed wetland (CW) in performing nutrient uptake by using macrophytes as treatment agents. This paper further discusses the potential of the utilization of the produced plant biomasses as bioenergy production materials, including bioethanol, biohydrogen, biogas, and biodiesel. This paper also highlights the conversion of plant biomasses into animal feed, biochar, adsorbent, and fertilizer, which may support clean production and circular economy efforts. The presented review aims to emphasize and explore the utilization of plant biomasses and their conversion into valuable products, which may solve problems related to plant biomass handling during the adoption of CW in wastewater treatment plants.
  16. Titah HS, Purwanti IF, Tangahu BV, Kurniawan SB, Imron MF, Abdullah SRS, et al.
    J Environ Manage, 2019 May 15;238:194-200.
    PMID: 30851558 DOI: 10.1016/j.jenvman.2019.03.011
    The emergence of the aluminium recycling industry has led to an increase in aluminium-containing wastewater discharge to the environment. Biological treatment of metal is one of the solutions that can be provided as green technology. Screening tests showed that Brochothrix thermosphacta and Vibrio alginolyticus have the potential to remove aluminium from wastewater. Brochothrix thermosphacta removed up to 49.60%, while Vibrio alginolyticus was capable of removing up to 59.72% of 100 mg/L aluminium in acidic conditions. The removal of aluminium by V. alginolyticus was well fitted with pseudo-first-order kinetics (k1 = 0.01796/min), while B. thermosphacta showed pseudo-second-order kinetics (k2 = 0.125612 mg substrate/g adsorbent. hr) in the process of aluminium removal. V. alginolyticus had a higher rate constant under acidic conditions, while B. thermosphacta had a higher rate constant under neutral pH conditions.
  17. Daud NM, Abdullah SRS, Hasan HA, Ismail N', Dhokhikah Y
    Sci Total Environ, 2022 Jan 07;819:152931.
    PMID: 34999070 DOI: 10.1016/j.scitotenv.2022.152931
    Batik is well known as one of the unique identifiers of the Southeast Asian region. Several countries that still preserve the batik heritage are Malaysia, Indonesia, China and India. The Batik industry holds a significant place in Malaysia's craft-based industry. In Malaysia, batik motifs and patterns are mostly hand-drawn and painted directly on fabric, therefore, each one is unique. The players in the Batik industry are mostly small businesses and cottage industries, particularly in the states of Kelantan, Terengganu, Pahang, Sabah and Sarawak. However, their market growth and contribution are not synchronized with the treatment system. The wastewater generated by this industry rarely meets standard effluent requirements and regulations, thus worrying the authorities. Batik wastewater is categorized as one of the highly polluted wastewaters. The toxicity of pollutants from batik may reduce environmental quality and pose a risk to human health. Batik wastewater needs extensive treatment, since no complete and appropriate treatment has been applied for so many years in specific batik industries. This paper reviews the batik industry in Malaysia, its wastewater generation and the available current treatment practices. It discusses integrated treatments of coagulation-flocculation and phytoremediation technology as a batik wastewater treatment process with potential utility in the batik industry. This review may become part of the guidance for the entire batik industry, especially in Malaysia.
  18. Lun YE, Abdullah SRS, Hasan HA, Othman AR, Kurniawan SB, Imron MF, et al.
    J Environ Manage, 2022 Mar 15;311:114832.
    PMID: 35303596 DOI: 10.1016/j.jenvman.2022.114832
    Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.
  19. Khalid AAH, Yaakob Z, Abdullah SRS, Takriff MS
    Bioresour Technol, 2018 Jan;247:930-939.
    PMID: 30060432 DOI: 10.1016/j.biortech.2017.09.195
    This study investigated acclimation ability of native Chlorella sorokiniana (CS-N) and commercial Chlorella sorokiniana (CS-C) in palm oil mill effluent (POME), their metabolic profile and feasibility of effluent recycling for dilution purpose. Maximum specific growth rate, µmax and lag time, λ of the microalgae were evaluated. Result shows both strains produced comparable growth in POME, with µmax of 0.31 day-1 and 0.30 day-1 respectively, albeit longer λ by the CS-C. However, three cycles of acclimation was able to reduce λ from eight days to two days for CS-C. Metabolic profiling using principal component analysis (PCA) shows clear cluster of acclimatized strains to suggest better stress tolerance of CS-N. Finally, a remarkable µmax of 0.57 day-1 without lag phase was achieved using acclimatized CS-N in 40% POME concentration. Acclimation has successfully shortened the λ and dilution with final effluent was proved to be feasible for further improvement of the microalgae growth.
  20. Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA
    Sci Total Environ, 2021 Nov 16.
    PMID: 34793802 DOI: 10.1016/j.scitotenv.2021.151668
    The application of plant-based coagulants in wastewater treatment has increasingly progressed in the coagulation-flocculation process toward green economy and cleaner production. Plant-based coagulants have a potential as essential substitutes for commercially used chemical coagulants because of their natural characteristics and biodegradability. Chemical coagulants leave residues in treated water and generated sludge, which cause harm to human health and the ecosystem. Thus, the exploration of plant-based coagulants in wastewater treatment could reduce and eliminate the potential damage of chemical coagulants and promote the alternative approach for sustainable environment. The general processing steps of the end-to-end plant-based coagulant production, which includes primary, secondary, and tertiary stages, are discussed. However, this review focuses more on the extraction process using different solutions and compares the performance of different coagulants in removal activities after effluent treatment. Discussion on the arising challenges is elaborated, and approaches for plant-based coagulant research in the near future are suggested.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links