Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL
    Food Chem, 2021 Oct 01;358:129914.
    PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914
    A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
  2. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK
    Int J Biol Macromol, 2019 Apr 01;126:569-577.
    PMID: 30584947 DOI: 10.1016/j.ijbiomac.2018.12.193
    The electrospinning PAN nanofiber membrane (P-CN) was hydrolysed to convert carboxylic groups as reaction sites and covalently graft chitosan molecule. The chitosan derivatives with quaternary ammonium groups exerted greater efficiency against bacteria as compared to pure chitosan. Hence, the chitosan modified membrane (P-CS), can be functionalized with quaternary amine (i.e., glycidyl trimethyl ammonium chloride, GTMAC) to form quaternized chitosan nanofiber membrane (designated as P-HTCC) under various conditions (acidic, neutral, and alkaline). N-quaternized derivatives of chitosan modified membrane (N-HTCC) showed 72% and 60% degree of quaternization (DQ) under acidic and neutral conditions, respectively. Under alkaline condition, additional quaternization of N, O-HTCC via its amino and hydroxyl groups, has improved up to 90% DQ of the chitosan. The antibacterial activity of the quaternized chitosan modified membrane prepared from acetic acid medium is stronger than that prepared from water and alkaline media. Also, antibacterial activity of quaternized chitosan is stronger than chitosan modified membrane against E. coli. The microbiological assessments showed that the water-stable P-HTCC nanofiber membrane under modification in acidic medium exerted antibacterial activity up to 99.95% against E. coli. Therefore, the P-HTCC membrane exhibited high potential to be integrated into microfiltration membrane to effectively disinfect E. coli.
  3. Ng IS, Ooi CW, Liu BL, Peng CT, Chiu CY, Chang YK
    Int J Biol Macromol, 2020 Jul 01;154:844-854.
    PMID: 32194127 DOI: 10.1016/j.ijbiomac.2020.03.127
    In this study, polyacrylonitrile (PAN) nanofiber membrane was prepared by an electrospinning technique. After alkaline hydrolysis, the ion-exchange nanofiber membrane (P-COOH) was grafted with chitosan molecules to form a chitosan-modified nanofiber membrane (P-COOH-CS). Poly(hexamethylene biguanide) (PHMB) was then covalently immobilized on P-COOH and P-COOH-CS to form P-COOH-PHMB and P-COOH-CS-PHMB, respectively. The nanofiber membranes were subjected to various surface analyses as well as to the evaluations of antibacterial activity against Escherichia coli. The optimal modification conditions for P-COOH-CS-PHMB were attained by water-soluble chitosan at 50 kDa of molecular weight, coupling pH at 7, and 0.05% (w/w) of PHMB. Within 10 min of treatment, the antibacterial rate was close to 100%. Under the similar conditions of antibacterial treatment, the P-COOH-CS-PHMB exhibited a better antibacterial efficacy than the P-COOH-PHMB. When the number of bacterial cells was increased by 2000 folds, both types of nanofiber membranes still maintained the antibacterial rate close to 100%. After five cycles of repeated antibacterial treatment, the antibacterial efficacy of P-COOH-PHMB was 96%, which was higher than that of P-COOH-CS-PHMB (83%). The experimental results revealed that the PHMB-modified nanofiber membranes can be suitably applied in water treatment such as water disinfection and biofouling control.
  4. Xu FX, Ooi CW, Liu BL, Song CP, Chiu CY, Wang CY, et al.
    Int J Biol Macromol, 2021 Jun 30;181:508-520.
    PMID: 33775766 DOI: 10.1016/j.ijbiomac.2021.03.151
    This study aimed to develop a novel electrospun polyacrylonitrile (PAN) nanofiber membrane with the enhanced antibacterial property. The PAN nanofiber membrane was first subjected to alkaline hydrolysis treatment, and the treated membrane was subsequently grafted with chitosan (CS) to obtain a CS-modified nanofiber membrane (P-COOH-CS). The modified membrane was then coupled with different dye molecules to form P-COOH-CS-Dye membranes. Lastly, poly(hexamethylene biguanide) hydrochloride (PHMB) was immobilized on the modified membrane to produce P-COOH-CS-Dye-PHMB. Physical characterization studies were conducted on all the synthesized nanofiber membranes. The antibacterial efficacies of nanofiber membranes prepared under different synthesis conditions were evaluated systematically. Under the optimum synthesis conditions, P-COOH-CS-Dye-PHMB was highly effective in disinfecting a high concentration of Escherichia coli, with an antibacterial efficacy of approximately 100%. Additionally, the P-COOH-CS-Dye-PHMB exhibited an outstanding wash durability as its antibacterial efficacy was only reduced in the range of 5%-7% even after 5 repeated cycles of treatment. Overall, the experimental results of this study suggested that the P-COOH-CS-Dye-PHMB is a promising antibacterial nanofiber membrane that can be adopted in the food, pharmaceutical, and textile industries.
  5. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
  6. Show PL, Ooi CW, Lee XJ, Yang CL, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Nov 01;162:1711-1724.
    PMID: 32805284 DOI: 10.1016/j.ijbiomac.2020.08.065
    Adsorption of lysozyme on the dye-affinity nanofiber membranes was investigated in batch and dynamic modes. The membrane matrix was made of electrospun polyacrylonitrile nanofibers that were grafted with ethylene diamine (EDA) and/or chitosan (CS) for the coupling of Reactive Blue 49 dye. The physicochemical properties of these dye-immobilized nanofiber membranes (P-EDA-Dye and P-CS-Dye) were characterized microscopically, spectroscopically and thermogravimetrically. The capacities of lysozyme adsorption by the dye-affinity nanofiber membranes were evaluated under various conditions, namely pH, dye immobilized density, and loading flow rate. The adsorption of lysozyme to the dye-affinity nanofiber membranes was well fitted by Langmuir isotherm and pseudo-second kinetic models. P-CS-Dye nanofiber membrane had a better performance in the dynamic adsorption of lysozyme from complex chicken egg white solution. It was observed that after five cycles of adsorption-desorption, the dye-affinity nanofiber membrane did not show a significant loss in its capacity for lysozyme adsorption. The robustness as well as high dynamic adsorption capability of P-CS-Dye nanofiber membrane are promising for the efficient recovery of lysozyme from complex feedstock via nanofiber membrane chromatography.
  7. Song CP, Ooi CW, Tey BT, Lu CX, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Dec 01;164:4455-4465.
    PMID: 32937154 DOI: 10.1016/j.ijbiomac.2020.09.051
    A stirred fluidized bed (SFB) ion exchange chromatography was successfully applied in the direct recovery of recombinant enhanced green fluorescent protein (EGFP) from the unclarified Escherichia coli homogenate. Optimal conditions for both adsorption and elution processes were determined from the packed-bed adsorption systems conducted at a small scale using the clarified cell homogenate. The maximal adsorption capacity and dissociation constant for EGFP-adsorbent complex were found to be 6.3 mg/mL and 1.3 × 10-3 mg/mL, respectively. In an optimal elution of EGFP with 0.2 M of NaCl solution (pH 9) and at 200 cm/h, the recovery percent of the EGFP was approximately 93%. The performances of SFB chromatography for direct recovery of EGFP was also evaluated under different loading volumes (50-200 mL) of crude cell homogenate. The single-step purification of EGFP by SFB recorded in a high yield (95-98%) and a satisfactory purification factor (~3 folds) of EGFP from the cell homogenate at 200 rpm of rotating speed.
  8. Chen KH, Lee SY, Show PL, Hong SC, Chang YK
    J Chromatogr B Analyt Technol Biomed Life Sci, 2018 Nov 15;1100-1101:65-75.
    PMID: 30292951 DOI: 10.1016/j.jchromb.2018.09.039
    Dye-ligand affinity chromatography in a stirred fluidized bed has been developed for the rapid recovery of malate dehydrogenase (MDH) from highly turbid baker's yeast cell homogenate in a single step. The most suitable dye, namely Reactive Orange 4, in its optimal immobilized concentration of 8.78 mg/mL was immobilized onto high-density STREAMLINE matrix. To further examine optimal adsorption and elution conditions, the enzyme recovery operation was carried out using unclarified cell homogenates in stirred fluidized bed system. Aiming to develop a non-specific eluent, namely NaCl, to effectively elute the MDH adsorbed, direct recovery of MDH from highly turbid cell homogenate (50% w/v) in a stirred fluidized bed adsorption system was performed. The proposed system successfully achieved a recovery yield of 73.6% and a purification factor of 73.5 in a single step by using 0.6 M NaCl as an eluent at a high liquid velocity of 200 cm/h.
  9. Liu BL, Ooi CW, Ng IS, Show PL, Lin KJ, Chang YK
    Food Chem, 2020 Oct 15;327:127038.
    PMID: 32447136 DOI: 10.1016/j.foodchem.2020.127038
    Polyacrylonitrile nanofiber membrane functionalized with tris(hydroxymethyl)aminomethane (P-Tris) was used in affinity membrane chromatography for lysozyme adsorption. The effects of pH and protein concentration on lysozyme adsorption were investigated. Based on Langmuir model, the adsorption capacity of P-Tris nanofiber membrane was estimated to be 345.83 mg/g. For the operation of dynamic membrane chromatography with three-layer P-Tris nanofiber membranes, the optimal operating conditions were at pH 9, 1.0 mL/min of feed flow rate, and 2 mg/mL of feed concentration. Chicken egg white (CEW) was applied as the crude feedstock of lysozyme in the optimized dynamic membrane chromatography. The percent recovery and purification factor of lysozyme obtained from the chromatography were 93.28% and 103.98 folds, respectively. Our findings demonstrated the effectiveness of P-Tris affinity nanofiber membrane for the recovery of lysozyme from complex CEW solution.
  10. Chang YK, Chen FT, Kuan G, Wei GX, Chu CH, Yan J, et al.
    Front Aging Neurosci, 2019;11:227.
    PMID: 31551753 DOI: 10.3389/fnagi.2019.00227
    Objective: This study investigated whether acute exercise duration affects inhibition in late middle-aged adults. Methods: Over four separate days, 40 late middle-aged adults completed, in a counterbalanced order, three exercise sessions consisting of single bouts of moderate-to-vigorous intensity cycling, with the main acute exercise durations being 10, 20, and 45 min, and a control session consisting of 30 min of reading. Their inhibition performance was then evaluated by administration of the Stroop test following each session. Results: The participants had shorter mean response times for both the congruent and neutral conditions of the Stroop following the acute exercise lasting 20 min than they did after the control session. The acute exercise lasting 20 min also resulted in shorter response times for both conditions of the Stroop than the acute exercise lasting only 10 min. Meanwhile, the acute exercise lasting 45 min resulted in a shorter mean response time for the neutral Stroop condition than did the control session. Finally, the acute exercise lasting 20 min resulted in the shortest mean response time of all four sessions for the Stroop incongruent condition. Conclusion: The above findings suggest that the moderate-to-vigorous intensity acute exercise lasting 20 min facilitated multiple cognitive function domains in general, whereas the exercise sessions of shorter and longer duration had negligible effects on executive function in the late middle-aged adults. These results highlight the need to consider the duration of any moderate-to-vigorous intensity exercise when developing acute exercise programs to facilitate executive function in aged populations.
  11. Hidrus A, Kueh YC, Norsa'adah B, Chang YK, Kuan G
    PMID: 34501562 DOI: 10.3390/ijerph18178972
    Brain Breaks® are structured physical activity (PA) web-based videos designed to promote an interest in learning and health promotion. The objective of this study was to examine its effects on decision balance (DB) which consists of the perceived benefits (Pros) and perceived barriers (Cons) of exercise in people with type 2 diabetes mellitus (T2DM). A randomised controlled trial was conducted among people with T2DM at Hospital Universiti Sains Malaysia. The intervention group received Brain Breaks videos for a period of four months. The intervention and control groups completed the validated Malay version of DB questionnaire for five times, at pre-intervention, the first month, the second month, the third month, and post-intervention. Multivariate Repeated Measures Analysis of Variance was performed for data analysis. A total of 70 participants were included (male = 39; female = 31) with a mean age of 57.6 years (SD = 8.5). The intervention group showed a significant change in the Pros and Cons factors of DB scores over time. The intervention group showed significantly higher scores for the Pros (p-value < 0.001) and lower scores for the Cons (p-value = 0.008) factors than the control group. In conclusion, the Brain Breaks video is an effective intervention to improve decisional balance in patients with T2DM to help them in deciding on behaviour change to be more physically active.
  12. Hidrus A, Kueh YC, Norsaádah B, Chang YK, Hung TM, Naing NN, et al.
    PMID: 32268601 DOI: 10.3390/ijerph17072507
    Brain Breaks videos are web-based structured physical activity (PA) videos that aim at stimulating an interest in learning and promoting health. Exercise is one of the important treatment regimens for people with type 2 diabetes mellitus (T2DM). Thus, the objective of this study was to determine the effects that Brain Breaks videos have on the motives for PA, as measured by the Physical Activity and Leisure Motivation Scale-Malay (PALMS-M), and the amount of PA, as measured by the International Physical Activity Questionnaire-Malay (IPAQ-M), in T2DM patients (the most common type of diabetes mellitus patients). This study was conducted using a randomized, double-blind design and grouped subjects under two research conditions: an experimental group given Brain Breaks videos and a control group. Purposive sampling was employed to recruit 70 T2DM patients (male = 39, female = 31) with the mean age of 57.6 (SD = 8.5) from Hospital Universiti Sains Malaysia, Kelantan. Over a four-month period, the participants in the experimental group were asked to perform PA daily based on a Brain Breaks video (10 min in duration) that was shared through a WhatsApp group. All participants from both groups answered the PALMS-M questionnaire five times: pre-intervention, the end of the first month, second month, and third month, and post-intervention. A repeated measure multivariate analysis of variance and a repeated measure analysis of variance were performed for the analyses of the data. The results demonstrated that four (appearance, others' expectations, physical condition, and mastery) out of eight motives for PA produced a significant mean score difference between the two study groups. All eight motives for PA showed an upward trend for the experimental group during the study period, while the control group showed a downward trend for all motives during the study period. As for the amount of PA, both groups showed significant differences (p = 0.001). The amount of PA increased in the experimental group during the study period, while it decreased in the control group. Therefore, Brain Breaks videos can be considered as an effective intervention for motivating T2DM patients for PA and improving their amount of PA.
  13. Ai JY, Kuan G, Juang LY, Lee CH, Kueh YC, Chu IH, et al.
    Int J Environ Res Public Health, 2022 Nov 22;19(23).
    PMID: 36497548 DOI: 10.3390/ijerph192315472
    Sleep is a crucial factor in healthy aging. However, most middle-aged adults experience high levels of sleep disorders. While previous findings have suggested exercise training could benefit the quality of sleep, the effects of multi-component exercise on sleep quality are less examined. Accordingly, the current study aimed to assess the effectiveness of a multi-component exercise program on the quality of sleep among middle-aged adults. Twenty-four middle-aged adults were randomly assigned either to a multi-component exercise (MCE) group or a control group. The participants in the MCE group attended a 90-min session per week for 12 weeks. The control group was instructed to maintain their daily routine for 12 weeks. The primary outcome was the sleep quality evaluated by the Pittsburgh Sleep Quality Index (PSQI). The secondary outcome was physical fitness, including muscular strength and endurance, balance, and flexibility. Regarding sleep quality, the global mean score (p = 028), sleep disturbances (p = 011), and sleep efficiency (p = 035) of the PSQI scores were significantly reduced in the MCE group after the 12-week intervention. Regarding physical fitness, the flexibility of the MCE group improved significantly after the intervention (p = 028), yet, no significant change was observed in the control group. Additionally, the muscular strength of the control group declined significantly after the 12-week period (p = 034). Our results revealed the effectiveness of the MCE intervention in improving sleep quality and physical fitness in middle-aged adults. Further studies using larger sample sizes, objective measures of sleep quality, different types of exercise training, as well as different populations, are warranted to extend our current findings.
  14. Lee SY, Liu BL, Wu JY, Chang YK
    Food Chem, 2021 Feb 15;338:128144.
    PMID: 33092004 DOI: 10.1016/j.foodchem.2020.128144
    A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.
  15. Ng IS, Tang MSY, Show PL, Chiou ZM, Tsai JC, Chang YK
    Int J Biol Macromol, 2019 Jul 01;132:615-628.
    PMID: 30940588 DOI: 10.1016/j.ijbiomac.2019.03.235
    In this work, a chitosan-modified nanofiber membrane was fabricated and used to examine the permeation characteristics of C-phycocyanin (CPC) obtained from Spirulina platensis. The effects of NaCl concentration (0.1-1.0 M), chitosan coupling pH (6-8), chitosan coupling concentration (0.1-3.0%), algal solution pH (6-8), algal mass concentration (0.1-1.0% dw/v), and membrane flux (4.08 × 10-2-2.04 × 10-1 mL/min·cm2) on the penetration performance of the membrane for CPC were investigated. The results show that the order of binding selectivity of the membrane for these proteins is contaminating proteins (TP) > allophycocyanin (APC) > CPC. TP and APC molecules were more easily adsorbed by the chitosan-modified membrane, and the CPC molecules most easily penetrated the membrane without being adsorbed, enhancing CPC purity. The purification factor and total mass flux were 3.3 fold and 66%, respectively, in a single step.
  16. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
  17. Chang YK, Show PL, Lan JC, Tsai JC, Huang CR
    Bioresour Technol, 2018 Dec;270:320-327.
    PMID: 30241065 DOI: 10.1016/j.biortech.2018.07.138
    An aqueous two-phase system (ATPS) with ionic liquids (ILs) was used for the isolate of C-phycocyanin (CPC) from Spirulina platensis microalga. Various imidazolium ILs and potassium salts were studied. The effect of ILs-ATPS on the extraction efficiency of CPC was also studied. The experimental parameters like pH, loading volume, algae concentration, temperature, and alkyl chain length of IL were well-covered in this report. The experimental results showed that the extraction efficiency, the partition coefficient, and the separation factor for CPC were 99%, 36.6, and 5.8, respectively, for an optimal pH value of 7 and a temperature of 308 K. The order of extraction efficiency for CPC using IL-ATPS was: 1-octyl-3-methylimidazolium bromide (C8MIM-Br) > 1-hexyl-3-methylimidazolium bromide (C6MIM-Br) > 1-butyl-3-methylimidazolium bromide (C4MIM-Br). The isolation process followed the pseudo second-order kinetic model and the thermodynamic results were obviously spontaneous.
  18. Hsin A, How SC, Wang SS, Ooi CW, Chiu CY, Chang YK
    Membranes (Basel), 2021 Dec 07;11(12).
    PMID: 34940464 DOI: 10.3390/membranes11120963
    The polyacrylonitrile (PAN) nanofiber membrane was prepared by the electrospinning technique. The nitrile group on the PAN nanofiber surface was oxidized to carboxyl group by alkaline hydrolysis. The carboxylic group on the membrane surface was then converted to dye affinity membrane through reaction with ethylenediamine (EDA) and Cibacron Blue F3GA, sequentially. The adsorption characteristics of lysozyme onto the dye ligand affinity nanofiber membrane (namely P-EDA-Dye) were investigated under various conditions (e.g., adsorption pH, EDA coupling concentration, lysozyme concentration, ionic strength, and temperature). Optimum experimental parameters were determined to be pH 7.5, a coupling concentration of EDA 40 μmol/mL, and an immobilization density of dye 267.19 mg/g membrane. To understand the mechanism of adsorption and possible rate controlling steps, a pseudo first-order, a pseudo second-order, and the Elovich models were first used to describe the experimental kinetic data. Equilibrium isotherms for the adsorption of lysozyme onto P-EDA-Dye nanofiber membrane were determined experimentally in this work. Our kinetic analysis on the adsorption of lysozyme onto P-EDA-Dye nanofiber membranes revealed that the pseudo second-order rate equation was favorable. The experimental data were satisfactorily fitted by the Langmuir isotherm model, and the thermodynamic parameters including the free energy change, enthalpy change, and entropy change of adsorption were also determined accordingly. Our results indicated that the free energy change had a negative value, suggesting that the adsorption process occurred spontaneously. Moreover, after five cycles of reuse, P-EDA-Dye nanofiber membranes still showed promising efficiency of lysozyme adsorption.
  19. Leong HY, Chang YK, Ooi CW, Law CL, Julkifle AL, Show PL
    Front Chem, 2019;7:201.
    PMID: 31001522 DOI: 10.3389/fchem.2019.00201
    Nowadays, downstream bioprocessing industries inclines towards the development of a green and high efficient bioseparation technology. Betacyanins are presently gaining higher interest in the food science as driven by their high tinctorial strength and health promoting functional properties. In this study, a novel green integration process of liquid biphasic electric partitioning system (LBEPS) was proposed for betacyanins extraction from peel and flesh of red-purple pitaya. Initially, the betacyanins extraction using LBEPS with initial settings was compared with that of liquid biphasic partitioning system (LBPS), and the results revealed that both systems demonstrated a comparable betacyanins extraction. This was followed by further optimizing the LBEPS for better betacyanins extraction. Several operating parameters including operation time, voltage applied, and position of graphitic electrodes in the system were investigated. Moreover, comparison between optimized LBEPS and LBPS with optimized conditions of electric system (as post-treatment) as well as color characterization and antioxidant properties assessment were conducted. Overall, the betacyanins extraction employing the optimized LBEPS showed the significant highest values of betacyanins concentration in alcohol-rich top phase (C
    t
    ) and partition coefficient (K) of betacyanins from peel (99.256 ± 0.014% and 133.433 ± 2.566) and flesh (97.189 ± 0.172% and 34.665 ± 2.253) of red-purple pitaya. These results inferred that an optimal betacyanins extraction was successfully achieved by this approach. Also, the LBEPS with the peel and flesh showed phase volume ratio (V
    r
    ) values of 1.667 and 2.167, respectively, and this indicated that they have a clear biphasic separation. In addition, the peel and flesh extract obtained from the optimized LBEPS demonstrated different variations of red color as well as their antioxidant properties were well-retained. This article introduces a new, reliable, and effective bioseparation approach for the extraction of biomolecules, which is definitely worth to explore further as a bioseparation tool in the downstream bioprocessing.
  20. Show PL, Ooi CW, Song CP, Chai WS, Lin GT, Liu BL, et al.
    Food Chem, 2021 May 01;343:128543.
    PMID: 33187742 DOI: 10.1016/j.foodchem.2020.128543
    Lysozyme from crude chicken egg white (CEW) feedstock was successfully purified using a stirred fluidized bed adsorption system ion exchange chromatography where STREAMLINE SP and SP-XL high density adsorbents were selected as the adsorption carrier. The thermodynamic and kinetic studies were carried out to understand the characteristics of lysozyme adsorption by adsorbents under various conditions, including adsorption pH, temperature, lysozyme concentration and salt concentrations. Results showed that SP and SP-XL adsorbents achieved optimum lysozyme adsorption at pH 9 with capacity of ~139.77 and ~251.26 mg/mL, respectively. The optimal conditions obtained from batch studies were directly employed to operate in SFBA process. For SP-XL adsorbent, the recovery yield and purification factor of lysozyme were 93.78% and ~40 folds, respectively. For SP adsorbent, lysozyme can be eluted ~100% with purification factor of ~26 folds. These two adsorbents are highly suitable for use in direct recovery of lysozyme from crude CEW.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links