Displaying all 11 publications

Abstract:
Sort:
  1. Gunasekaran, G., Muhamad Fitri C.A., Chandrashegkar, S., Hajar Amalnina A.B., Raishan, S., Nurul Faiznani, Z., et al.
    Medicine & Health, 2017;12(2):202-209.
    MyJurnal
    Madu gelam telah didapati mempunyai kesan anti-oksidatif, anti-kanser dan antiinflamasi
    terhadap banyak jenis kanser. Tujuan kajian ini adalah untuk menentukan
    kesan madu gelam terhadap aras tekanan oksidatif sel kanser peparu manusia.
    IC50 madu gelam ditentukan dengan merawat sel A549 dengan dos madu yang
    berbeza (50-200 mg/ml). Sel dibahagikan kepada 4 kumpulan dan diaruh tekanan
    oksidatif dengan menggunakan hidrogen peroksida (H2
    O2
    ) mengikut kumpulan
    tertentu: kawalan, H2
    O2
    , madu gelam, H2
    O2
    + madu gelam. Selepas 24 jam
    rawatan, biopetanda tekanan oksidatif seperti malondialdehid (MDA) dan protein
    karbonil ditentukan. Aruhan tekanan oksidatif meningkatkan aras MDA (p
  2. Tamel Selvan K, Goon JA, Makpol S, Tan JK
    Antioxidants (Basel), 2023 Feb 10;12(2).
    PMID: 36830009 DOI: 10.3390/antiox12020449
    Metabolic syndrome (MetS) is a cluster of metabolic disturbances, including abdominal obesity, hypertension, hypertriglyceridemia, reduced high-density lipoprotein cholesterol (HDL-C) and hyperglycemia. Adopting a healthier lifestyle and multiple drug-based therapies are current ways to manage MetS, but they have limited efficacy, albeit the prevalence of MetS is rising. Microalgae is a part of the human diet and has also been consumed as a health supplement to improve insulin sensitivity, inflammation, and several components of MetS. These therapeutic effects of microalgae are attributed to the bioactive compounds present in them that exhibit antioxidant, anti-inflammatory, anti-obesity, antihypertensive, hepatoprotective and immunomodulatory effects. Therefore, studies investigating the potential of microalgae in alleviating MetS are becoming more popular, but a review on this topic remains scarce. In this review, we discuss the effects of microalgae, specifically on MetS, by reviewing the evidence from scientific literature covering in vitro and in vivo studies. In addition, we also discuss the underlying mechanisms that modulate the effects of microalgae on MetS, and the limitations and future perspectives of developing microalgae as a health supplement for MetS. Microalgae supplementation is becoming a viable approach in alleviating metabolic disturbances and as a unique addition to the management of MetS.
  3. Zhu Y, Tan JK, Wong SK, Goon JA
    Int J Mol Sci, 2023 May 23;24(11).
    PMID: 37298120 DOI: 10.3390/ijms24119168
    Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
  4. Loo J, Shah Bana MAF, Tan JK, Goon JA
    Exp Gerontol, 2023 Oct 15;182:112294.
    PMID: 37730186 DOI: 10.1016/j.exger.2023.112294
    Dietary restriction (DR) interventions have demonstrated their efficacy in extending lifespan; however, the association between lifespan extension and health span remains unclear. This article aims to analyze the relationship between DR-induced lifespan and health span in Caenorhabditis elegans (C. elegans), a widely used animal model in lifespan studies. By examining various parameters such as lipofuscin accumulation (an aging marker) and locomotor and feeding capacities (indicators of muscle degradation rate), we have compiled papers that investigate and report on these DR-induced effects.The majority of the papers reviewed consistently demonstrate that DR improves both lifespan and health span in C. elegans. Worms subjected to DR exhibit slower lipofuscin accumulation compared to those fed ad libitum, indicating a reduction in age-related cellular damage. Additionally, DR-treated worms display a higher locomotion capacity, suggesting a slower rate of muscle degradation. However, it is worth noting that there are some discrepancies among the papers regarding feeding capacity. These contradictions can be attributed to the different methods employed to initiate DR. While many approaches slow muscle degeneration and enhance pumping rates through adaptation to limited food sources, other methods, such as using eat-2 mutant worms or interventions that mimic the effects of eat-2, reduce feeding capacity and consequently restrict food intake. In conclusion, the findings suggest a strong correlation between DR-induced longevity and the extension of health span in C. elegans, as evidenced by improvements in various health span parameters. DR interventions not only extend lifespan but also mitigate age-related markers and preserve locomotor capacity. Although conflicting results are observed regarding feeding capacity, the overall evidence supports the notion that DR promotes healthier aging in this animal model.
  5. Goon JA, Noor Aini AH, Musalmah M, Yasmin Anum MY, Wan Ngah WZ
    Med J Malaysia, 2008 Oct;63(4):319-24.
    PMID: 19385493 MyJurnal
    Effect of Tai Chi exercise on the level of DNA damage using the comet assay, lymphocyte viability and frequency of sister chromatid exchange (SCE) were determined in adults aged above 45. Tai Chi participants of 7 years (n=35), showed higher level of normal DNA and lower level of mild and severely damaged DNA as compared to the sedentary subjects (n=35). The former are suggested to have effective DNA repair mechanism as their frequency of SCE was markedly lower. Higher lymphocyte apoptosis and proliferation found in the Tai Chi participants also indicated that the exercise promotes renewal and regeneration of lymphocytes.
  6. Goon JA, Nor Azman NHE, Abdul Ghani SM, Hamid Z, Wan Ngah WZ
    Clin Nutr ESPEN, 2017 10;21:1-12.
    PMID: 30014863 DOI: 10.1016/j.clnesp.2017.07.004
    Vitamin E is a fat-soluble compound and powerful antioxidant that have been shown to protect the cell membranes against damage caused by free radicals. Human vitamin E supplementation studies are usually limited to α-tocopherol but currently tocotrienols are also available. This study aims to compare the effects of tocotrienol rich fraction (TRF) with α-tocopherol (α-TF) supplementation on oxidative stress in healthy male and female older adults aged 50-55 years old. A total of 71 subjects both male and female aged between 50 and 55 years were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24) for six months. Blood was taken at baseline (month 0), 3 months and 6 months osf supplementation for determination of plasma malondialdehyde (MDA), protein carbonyl, total DNA damage, vitamin D concentration and vitamin E isomers. α-TF supplementation reduced plasma MDA and protein carbonyl in female subjects after 3 and 6 months. TRF supplementation reduced MDA levels in both males and females as early as 3 months while DNA damage was reduced in females only at 6 months. Supplementation with α-TF and TRF increased plasma vitamin D concentration in both males and females after 6 months, but vitamin D concentration in male subjects were significantly higher compared to female subjects in TRF group. Vitamin E isomer determination showed α-TF, α-tocotrienol and γ-tocotrienol were increased in both male and female subjects. In conclusion, TRF supplementation effects were different from α-TF in reducing oxidative stress markers and vitamin D levels with a more pronounced effect in female subjects.
  7. Nor Azman NHE, Goon JA, Abdul Ghani SM, Hamid Z, Wan Ngah WZ
    Antioxidants (Basel), 2018 May 28;7(6).
    PMID: 29843393 DOI: 10.3390/antiox7060074
    BACKGROUND: Tocotrienol and tocopherol are known to prevent numerous degenerative diseases. The aim of this study is to compare the effects of tocotrienol-rich fraction (TRF) with α-tocopherol (α-TF) on the antioxidant status of healthy individuals aged between 50 and 55 years.

    METHODS: Volunteers were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24). Fasting venous blood samples were taken at baseline (0 month), 3 months and 6 months of supplementation for the determination of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities as well as for reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations.

    RESULTS: CAT and GPx were unaffected by TRF and α-TF supplementations. SOD activity increased significantly after six months of TRF supplementation. Analysis by gender showed that only female subjects had significant increases in SOD and GPx activities after six months of TRF supplementation. GPx activity was also significantly higher in females compared to males after six months of TRF supplementation. The GSH/GSSG ratio increased significantly after six months of TRF and α-TF supplementation in only the female subjects.

    CONCLUSION: TRF and α-TF supplementation exhibited similar effects to the antioxidant levels of older adults with TRF having more significant effects in females.

  8. Ghani SMA, Goon JA, Azman NHEN, Zakaria SNA, Hamid Z, Ngah WZW
    Clinics (Sao Paulo), 2019 03 07;74:e688.
    PMID: 30864639 DOI: 10.6061/clinics/2019/e688
    OBJECTIVES: This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults.

    METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis.

    RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways.

    CONCLUSION: Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.

  9. Goon JA, Aini AH, Musalmah M, Anum MY, Nazaimoon WM, Ngah WZ
    J Phys Act Health, 2009 Jan;6(1):43-54.
    PMID: 19211957
    BACKGROUND: The biochemical mechanisms involving oxidative stress to explain the relationship between exercise and healthy aging are still unclear.

    METHODS: Tai Chi participants and matched sedentary volunteers age 45 and above were enrolled. Glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities; levels of DNA damage using the comet assay; and malondialdehyde (MDA) and advanced glycation end products (AGE) were determined at 0, 6, and 12 months.

    RESULTS: Tai Chi subjects had decreased normal and increased mildly damaged DNA with elevated GPx activity after 6 months (n=25). Plasma MDA and AGE concentrations decreased significantly after 12 months (n=15) accompanied by increased SOD activity. This may be attributed to the hormesis effect, whereby mild induction of oxidative stress at the first 6 months of exercise resulted in stimulation of antioxidant defenses. These parameters were unchanged in the sedentary subjects in the first 6 months (n=27) except for elevated SOD activity. After 12 months, the sedentary subjects (n=17) had decreased normal DNA and increased severely damaged DNA with unaltered MDA and AGE levels while SOD and GPx activities were significantly elevated.

    CONCLUSION: Regular Tai Chi exercise stimulated endogenous antioxidant enzymes and reduced oxidative damage markers.

  10. Wetchakul P, Goon JA, Adekoya AE, Olatunji OJ, Ruangchuay S, Jaisamut P, et al.
    BMC Complement Altern Med, 2019 Aug 13;19(1):209.
    PMID: 31409340 DOI: 10.1186/s12906-019-2626-1
    BACKGROUND: The imbalance between the generation of free radicals and natural cellular antioxidant defenses, known as oxidative stress, can cause oxidation of biomolecules and further contribute to aging-associated diseases. The purpose of this study was to evaluate the antioxidant capacities of Thai traditional tonifying preparation, Jatu-Phala-Tiga (JPT) and its herbal ingredients consisting of Phyllanthus emblica, Terminalia arjuna, Terminalia chebula, and Terminalia bellirica and further assess its effect on longevity.

    METHOD: Antioxidant activities of various extracts obtained from JPT and its herbal components were carried out using well-established methods including metal chelating, free radical scavenging, and ferric reducing antioxidant power assays. Qualitative analysis of the chemical composition from JPT water extract was done by high-performance liquid chromatography tandem with electrospray ionisation mass spectrometry. The effect of JPT water extract on the lifespan of Caenorhabditis elegans were additionally described.

    RESULTS: Among the extracts, JPT water extract exerted remarkable antioxidant activities as compared to the extracts from other solvents and individual constituting plant extract. JPT water extract was found to possess the highest metal chelating activity, with an IC50 value of 1.75 ± 0.05 mg/mL. Moreover, it exhibited remarkable scavenging activities towards DPPH, ABTS, and superoxide anion radicals, with IC50 values of 0.31 ± 0.02, 0.308 ± 0.004, and 0.055 ± 0.002 mg/mL, respectively. The ORAC and FRAP values of JPT water extract were 40.338 ± 2.273 μM of Trolox/μg of extract and 23.07 ± 1.84 mM FeSO4/mg sample, respectively. Several well-known antioxidant-related compounds including amaronols, quinic acid, gallic acid, fertaric acid, kurigalin, amlaic acid, isoterchebin, chebulagic acid, ginkgolide C, chebulinic acid, ellagic acid, and rutin were found in this extract. Treatment with JPT water extract at 1 and 5 mg/mL increased C. elegans lifespan under normal growth condition (7.26 ± 0.65 vs. 10.4 0± 0.75 (p 

  11. Loo JL, Mohamad Kamal NA, Goon JA, Ahmad Damanhuri H, Tan JAC, Abdul Murad NA, et al.
    Front Psychiatry, 2021;12:698911.
    PMID: 34916966 DOI: 10.3389/fpsyt.2021.698911
    Background: Oxidative stress markers are found to be linked with depression and suicide attempts in bipolar disorder (BD), although the role of DNA damage as a marker of suicidal ideation and attempt has yet to be determined. We aim to investigate the association between DNA damage and suicidal behaviour, i.e., suicidal ideation and suicide attempt, among suicidal ideators in BD patients while accounting for clinical and psychosocial risk factors. Methods: A cross-sectional study was conducted in the Universiti Kebangsaan Malaysia Medical Centre on 62 consecutive BD patients diagnosed using the M.I.N.I. Neuropsychiatric Interview and 26 healthy control participants. Socio-demographic and clinical assessments were performed using the Columbia Suicide Severity Rating Scale (C-SSRS) for lifetime suicidal ideation and attempt, Quick Inventory of Depressive Symptomatology (QIDS) for depression severity, Clinical Global Impression for Bipolar Disorder (CGI-BD) for illness severity [both mania (CGI-Mania) and major depressive episode (CGI-MDE)], Social Readjustment Rating Scale (SRRS) for change in life events, and Barratt Impulsiveness Scale (BIS) for behavioural impulsivity. The degree of DNA damage in peripheral blood samples was determined using a standard protocol of comet assay. Results: Multivariable logistic regression revealed higher scores of CGI-MDE as the sole significant factor for lifetime suicidal ideation (OR = 1.937, 95% CI = 1.799-2.076). Although initial bivariate analysis showed a significant association between DNA damage, malondialdehyde (MDA), catalase (CAT), and suicidal behaviour, the findings were not seen in multivariable logistic regression. Bivariate subgroup analysis showed that moderate and severe DNA damage (p = 0.032 and p = 0.047, respectively) was significantly associated with lifetime suicide attempts among lifetime suicidal ideators. The study is the first to look at the connexion between DNA damage and suicidal risk in bipolar patients. It is limited by the small sample size and lack of information on illicit substance use. Conclusions: More severe DNA damage was significantly associated with lifetime suicide attempts among lifetime suicidal ideators in BD. However, the severity of depression was found to be independently associated with lifetime suicidal ideation per se rather than DNA damage in BD. Larger prospective studies are required to ascertain the potential of DNA damage as a biomarker for the transition from suicidal ideation to a suicide attempt.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links