Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Fukuda M, Uni S, Otsuka Y, Eshita Y, Nakatani J, Ihara K, et al.
    Parasitol Int, 2015 Dec;64(6):519-21.
    PMID: 26209456 DOI: 10.1016/j.parint.2015.07.006
    A case of zoonotic onchocercosis has been found in a resident who lived in Iizuka City, Fukuoka Prefecture, Japan for some time. A 24-year-old male developed a painful nodule on the middle finger of his right hand. The nodule was surgically removed from the vagina fibrosa tendinis of the finger at Beppu Medical Center, Beppu City, Oita Prefecture in 2012. The causative agent was identified as a female Onchocerca dewittei japonica based on its histopathological characteristics. The identity of the filarioid has been confirmed by sequencing the cox1 gene. The present study indicates that the zoonotic onchocercosis caused by O. dewittei japonica has been concentrated in northeast Kyushu.
  2. Nazar M, Ul Hassan Shah M, Ahmad A, Goto M, Zaireen Nisa Yahya W, Moniruzzaman M
    Chemosphere, 2023 Dec;344:140412.
    PMID: 37827466 DOI: 10.1016/j.chemosphere.2023.140412
    Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.
  3. Sivapragasam M, Moniruzzaman M, Goto M
    Biotechnol J, 2020 Apr;15(4):e1900073.
    PMID: 31864234 DOI: 10.1002/biot.201900073
    Ionic liquids (ILs), a class of materials with unique physicochemical properties, have been used extensively in the fields of chemical engineering, biotechnology, material sciences, pharmaceutics, and many others. Because ILs are very polar by nature, they can migrate into the environment with the possibility of inclusion in the food chain and bioaccumulation in living organisms. However, the chemical natures of ILs are not quintessentially biocompatible. Therefore, the practical uses of ILs must be preceded by suitable toxicological assessments. Among different methods, the use of microorganisms to evaluate IL toxicity provides many advantages including short generation time, rapid growth, and environmental and industrial relevance. This article reviews the recent research progress on the toxicological properties of ILs toward microorganisms and highlights the computational prediction of various toxicity models.
  4. Li J, Shimizu K, Akasako H, Lu Z, Akiyama S, Goto M, et al.
    Bioresour Technol, 2015 Jan;175:463-72.
    PMID: 25459856 DOI: 10.1016/j.biortech.2014.10.047
    This study revealed the biotic and abiotic parameters driving the variations in microcystins (MCs) biodegradability of a practical biological treatment facility (BTF). Results showed that similar trends of seasonal variation were seen for microcystin-LR (MCLR) biodegradability of biofilms on the BTF and indigenous MCLR-degrader population, where both peaks co-occurred in October, following the peaks of natural MCLR concentration and water temperature observed in August. The lag period might be required for accumulation of MCLR-degraders and MCLR-degrading enzyme activity. The MCLR-degrader population was correlated to temperature, MCLR and chlorophyll-a concentration in water where the biofilms submerged, indicating that these abiotic and biotic parameters exerted direct and/or indirect influences on seasonal variation in MCLR-biodegradability. In comparison, no effect of other co-existing MCs on biodegradation of one MC was observed. However, proliferation of MC-degraders along biodegradation processes positively responded to total amount of MCs, suggesting that multiple MCs contributed additively to MC-degrader proliferation.
  5. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
  6. Chowdhury MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    Int J Pharm, 2021 May 15;601:120582.
    PMID: 33872711 DOI: 10.1016/j.ijpharm.2021.120582
    Human skin contains numerous antigen-presenting cells that are a potential target for several immune-based therapies, including vaccination and cancer immunotherapy. However, the outermost layer of the skin-the stratum corneum-acts as a major physical barrier against the permeation of antigens that have a molecular weight > 500 Da. In this study, an ionic liquid-assisted delivery system (ILDS) was developed, which enabled the successful transdermal delivery of an antigenic protein, ovalbumin (OVA), with a toll-like receptor agonist, imiquimod, as an adjuvant, to stimulate a specific immune response. Both the ionic liquids and ILDS were completely biocompatible for topical or transdermal application for therapeutic purposes. The skin permeation of the antigenic protein and adjuvant was found to be significantly enhanced because of the incorporation of a surface-active ionic liquid in the ILDS. An in vivo immunization study showed that there was a high level of OVA-specific IgG antibody production because of the enhanced permeation of the antigen and adjuvant across and into the skin. In a preclusive anticancer study, vaccination through ILDS showed stronger tumor-growth inhibition compared to control group. These results indicated that the ILDS could be a promising strategy for transdermal immunization as future therapeutics.
  7. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Moniruzzaman M, Goto M
    Int J Pharm, 2018 Jul 30;546(1-2):31-38.
    PMID: 29751143 DOI: 10.1016/j.ijpharm.2018.05.021
    The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1H and 13C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.
  8. Anuar NSS, Kassim AA, Utsumi M, Iwamoto K, Goto M, Shimizu K, et al.
    Microbes Environ, 2017 Dec 27;32(4):352-357.
    PMID: 29093279 DOI: 10.1264/jsme2.ME17109
    Geosmin and 2-methylisoborneol (MIB) outbreaks in tropical water bodies, such as Southeast Asia, by actinomycetes have not yet been elucidated in detail. Six Streptomyces isolates from lowland environments in Malaysia were selected and evaluated for their odor production under different temperatures. The gene responsible for the production of geosmin, geoA, was detected in all isolates, while only two isolates harbored tpc, which is responsible for 2-MIB production. This result suggested that geosmin and 2-MIB synthesis pathway genes already existed in the environment in the Tropics of Southeast Asia. Furthermore, our isolates produced musty odor compounds at 30°C, and differences were observed in musty odor production between various temperatures. This result indicated the potential for odor episodes in water bodies of the tropical countries of Southeast Asia throughout the year due to the mean annual ambient temperature of 27°C in the lowlands.
  9. Islam MR, Chowdhury MR, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Int J Pharm, 2020 May 30;582:119335.
    PMID: 32311469 DOI: 10.1016/j.ijpharm.2020.119335
    Transdermal delivery of drugs is more challenging for drugs that are insoluble or sparingly soluble in water and most organic solvents. To overcome this problem, ionic liquid (IL)-mediated ternary systems have been suggested as potential drug carriers. Here, we report potent ternary (IL-EtOH-IPM) systems consisting of biocompatible ILs, ethanol (EtOH), and isopropyl myristate (IPM) that can dissolve a significant amount of the sparingly soluble drug acyclovir (ACV). The ternary systems were optically transparent and thermodynamically stable with a wide range of IL pertinence. An in vitro drug permeation study showed that the ILs in the ternary systems dramatically enhanced ACV permeation into and across the skin. Fourier Transform Infrared spectroscopy of the stratum corneum (sc) after treatment with ternary systems showed that the skin barrier function was reduced by disturbance of the regularly ordered arrangement of corneocytes and modification of the surface properties of the sc during permeation. Histological analysis, and skin irritation studies using a reconstructed human epidermis model showed the safety profile of the ternary system, and there were no significant changes in the structures of the sc, epidermis, and dermis. Therefore, ternary systems containing biocompatible ILs are promising for transdermal delivery of insoluble or sparingly soluble drugs.
  10. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Chem Commun (Camb), 2019 Jun 11.
    PMID: 31184357 DOI: 10.1039/c9cc02812a
    We report a one-step emulsification and rapid freeze-drying process to develop a curcumin-ionic liquid (CCM-IL) complex that could be readily dispersed in water with a significantly enhanced solubility of ∼8 mg mL-1 and half-life (t1/2) of ∼260 min compared with free CCM (solubility ∼30 nM and t1/2 ∼ 20 min). This process using an IL consisting of a long chain carbon backbone as a surfactant, may provide an alternative way of enhancing the solubility of poorly water-soluble drugs.
  11. Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, et al.
    Hum Mutat, 2021 01;42(1):50-65.
    PMID: 33131168 DOI: 10.1002/humu.24129
    Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
  12. Al-Samet MA, Goto M, Mubarak NM, Al-Muraisy SA
    Environ Sci Pollut Res Int, 2021 Dec;28(47):67632-67645.
    PMID: 34255262 DOI: 10.1007/s11356-021-15287-2
    The ever-increasing organic waste generation in Malaysia is a significant contributor to greenhouse gas (GHG) emissions. However, organic wastes can be utilized to produce biogas by anaerobic digestion, which is a promising option for both energy and material recovery from organic wastes with high moisture content. Therefore, this study was formulated to investigate the feasibility of anaerobic co-digestion of three types of organic wastes generated in significantly huge quantities in Malaysia, namely palm oil mill effluent (POME), food waste (FW), and sewage sludge (SWS). The biomethane potential (BMP) test was used to evaluate the biomethane potential from these organic wastes under mesophilic conditions to establish a stable and balanced microbial community, which may lack in mono-digestion, to improve biogas production. Comparative performance was made at different food to microorganism (F/M) ratios to investigate methane production in three groups of assays, namely A, B, and C. In groups A and B, the effect of F/M ratio variation on methane production was investigated, while in group C, the effect of varying the co-substrate mixture on methane yield was examined. The findings showed that the highest methane yields achieved for mono-digestion of POME and SWS in group A were 164.44 mL-CH4/g-CODadded and 65.34 mL-CH4/g-CODadded, respectively, at an F/M ratio of 0.8 and 197.90 mL-CH4/g-CODadded for FW in group B at an F/M ratio of 0.5. In addition, the highest methane yield achieved from the anaerobic co-digestion was at 151.47 mL-CH4/g-CODadded from the co-digestion of the POME and SWS (50:50) at an F/M ratio of 1.7 in group A. Both AD and AcoD were tested to fit into two kinetic models: the modified Gompertz and the transfer function models. The results showed that the modified Gompertz model had a better fit and was more adjusted to the experimental results for both AD and AcoD. The importance of this research lies in the economics of anaerobically co-digesting these abundance feedstocks and the variations in their characteristics which were found to increase their methane yield and process efficiency in anaerobic co-digestion.
  13. Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M
    Mol Pharm, 2021 08 02;18(8):3108-3115.
    PMID: 34250805 DOI: 10.1021/acs.molpharmaceut.1c00324
    Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the β-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.
  14. Shimul IM, Moshikur RM, Nabila FH, Moniruzzaman M, Goto M
    Food Chem, 2023 Dec 15;429:136911.
    PMID: 37478610 DOI: 10.1016/j.foodchem.2023.136911
    Flavonoids have diverse beneficial roles that potentiate their application as nutraceutical agents in nutritional supplements and as natural antimicrobial agents in food preservation. To address poor solubility and bioactivity issues, we developed water-soluble micellar formulations loaded with single and multiple flavonoids using the biocompatible surface-active ionic liquid choline oleate. The food preservation performance was investigated using luteolin, naringenin, and quercetin as model bioactive compounds. The micellar formulations formed spherical micelles with particle sizes of <150 nm and exhibited high aqueous solubility (>5.15 mg/mL). Co-delivery of multiple flavonoids (luteolin, naringenin, and quercetin in LNQ-MF) resulted in 84.85% antioxidant activity at 100 μg/mL. The effects on Staphylococcus aureus and Salmonella enterica were synergistic with fractional inhibitory concentration indices of 0.87 and 0.71, respectively. LNQ-MF hindered the growth of S. aureus in milk (0.83-0.89 log scale) compared to the control. Co-delivered encapsulated flavonoids are a promising alternative to chemical preservatives.
  15. Akter A, Goto M, Megat Mohd Noor MJ, Parvez A, Khanam S, Bakar Siddique MA, et al.
    RSC Adv, 2023 Apr 03;13(16):10610-10620.
    PMID: 37025665 DOI: 10.1039/d3ra00595j
    Tannery sludge, heavy metals (HMs) enriched hazardous solid waste, is produced extensively in many regions of the world. Even though the sludge is hazardous, it can be considered a material resource, if organic matter and HMs in the sludge can be stabilized to minimize its negative environmental impacts. This research aimed to evaluate the efficacy of using subcritical water (SCW) treatment for tannery sludge treatment through immobilization and thus reduction of HMs to mitigate their potential environmental risk and toxicity. HMs in the tannery sludge were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and the average concentration of HMs (mg kg-1) was found in the following decreasing order of Cr (12 950) > Fe (1265) > Cu (76) > Mn (44) > Zn (36) > Pb (14) with very high Cr concentration. The result of toxicity characteristics leaching procedure and sequential extraction procedure tests revealed that the raw tannery sludge leachate contained 11.24 mg L-1 Cr, which classified the raw tannery sludge into a very high-risk category. After SCW treatment, the concentration of Cr in leachate was reduced to 1.6 mg L-1 indicating risk reduction to a low-risk category. The eco-toxicity levels of other HMs also decreased considerably after SCW treatment. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) analysis were employed to identify the effective immobilizing substances formed in the SCW treatment process. The favorable formation of immobilizing orthorhombic tobermorite (Ca5Si6O16(OH)2·4H2O) at 240 °C in the SCW treatment process was confirmed by XRD and SEM analysis. The results confirmed that the formation of 11 Å tobermorite is capable of strongly immobilizing HMs in the SCW treatment process. Further, both orthorhombic 11 Å tobermorite and 9 Å tobermorite were successfully synthesized by SCW treatment on a mixture of tannery sludge including rice husk silica and Ca(OH)2 with water under rather mild conditions. Hence, it can be concluded that SCW treatment of tannery sludge with supplementary silica from rice husk can effectively immobilize the HMs and significantly reduce their environmental risk through tobermorite formation.
  16. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Int J Pharm, 2019 Jun 30;565:219-226.
    PMID: 31077761 DOI: 10.1016/j.ijpharm.2019.05.020
    In order to prevent common hypersensitivity reactions to paclitaxel injections (Taxol), we previously reported an ionic liquid-mediated paclitaxel (IL-PTX) formulation with small particle size and narrow size distribution. The preliminary work showed high PTX solubility in the IL, and the formulation demonstrated similar antitumor activity to Taxol, while inducing a smaller hypersensitivity effect in in vitro cell experiments. In this study, the stability of the IL-PTX formulation was monitored by quantitative HPLC analysis, which showed that IL-PTX was more stable at 4 °C than at room temperature. The in vivo study showed that the IL-PTX formulation could be used in a therapeutic application as a biocompatible component of a drug delivery system. To assess the in-vivo biocompatibility, IL or IL-mediated formulations were administered intravenously by maintaining physiological buffered conditions (neutral pH and isotonic salt concentration). From in vivo pharmacokinetics data, the IL-PTX formulation was found to have a similar systemic circulation time and slower elimination rate compared to cremophor EL mediated paclitaxel (CrEL-PTX). Furthermore, in vivo antitumor and hypersensitivity experiments in C57BL/6 mice revealed that IL-PTX had similar antitumor activity to CrEL-PTX, but a significantly smaller hypersensitivity effect compared with CrEL-PTX. Therefore, the IL-mediated formulation has potential to be an effective and safe drug delivery system for PTX.
  17. Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 Sep 15;13(36):42461-42472.
    PMID: 34460218 DOI: 10.1021/acsami.1c11533
    Since injection administration for diabetes is invasive, it is important to develop an effective transdermal method for insulin. However, transdermal delivery remains challenging owing to the strong barrier function of the stratum corneum (SC) of the skin. Here, we developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs) for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three different FAs (C18:0, C18:1, and C18:2)-as biocompatible surface-active ILs (SAILs). The MEFs were successfully developed using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase. Ternary phase behavior, dynamic light scattering, and transmission electron microscopy studies revealed that MEFs were thermodynamically stable with nanoparticle size. The MEFs significantly enhanced the transdermal permeation of insulin via the intercellular route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing mechanism. In vivo transdermal administration of low insulin doses (50 IU/kg) to diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly compared with a commercial surfactant-based formulation by increasing the bioavailability of insulin in the systemic circulation and sustained the insulin level for a much longer period (half-life > 24 h) than subcutaneous injection (half-life 1.32 h). When [Chl][C18:2] SAIL-based MEF was transdermally administered, it reduced the BGL by 56% of its initial value. The MEFs were biocompatible and nontoxic (cell viability > 90%). They remained stable at room temperature for 3 months and their biological activity was retained for 4 months at 4 °C. We believe SAIL-based MEFs will alter current approaches to insulin therapy and may be a potential transdermal nanocarrier for protein and peptide delivery.
  18. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
  19. Khan HW, Elgharbawy AAM, Bustam MA, Goto M, Moniruzzaman M
    Molecules, 2023 Mar 03;28(5).
    PMID: 36903590 DOI: 10.3390/molecules28052345
    Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.
  20. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Pharmaceutics, 2020 Apr 24;12(4).
    PMID: 32344768 DOI: 10.3390/pharmaceutics12040392
    The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links