Displaying publications 1 - 20 of 72 in total

Abstract:
Sort:
  1. Siti Maslina Mohamad Alwi, Lai, Oi Ming
    MyJurnal
    Palm oil (PO) and fully hydrogenated palm oil (FHPO) were subjected to enzymatic
    interesterification using 9.5% of TLIM Lipozyme. The optimum condition for this process
    occurred at 62.75°C, with reaction time 172.50 minutes with the ratio of 1:1 for palm oil to
    hydrogenated palm oil respectively. The Palmitoyl-Oleoyl-Stereoyl (POS) yield obtained
    was approximately 15%. Product was subsequently subjected to a fractionation process
    at various cooling temperatures and reaction time. At 34°C, POS achieved was at the
    highest level which was approximately 31% after 12 hours cooling process. The study of
    physiochemical properties of the Cocoa butter Equivalent (CBE) fat was determined for the
    purpose of characterization identification. The properties identified were solid fat content,
    slip melting point (SMP) and iodine value (IV). The IV and SMP values obtained were
    44.30 and 29°C respectively. However, CBE produced almost 0% of Solid Fat Content
    (SFC) at 30°C. Apart from the high yield of POS, the physicochemical characteristics
    showed significant compatibility with that of CB. In addition, the crystal polymorph of
    CBE 34 physicochemical characteristics of CBE34 (β′+β) was similar to CBE. Hence, from
    this study, CBE 34 is recommended for utilization in the confectionery industry as CBE.
  2. Helmi Wasoh, Sarinah Baharun, Murni Halim, Arbakariya B. Ariff, Lai, Oi-Ming, Ahmad Firdaus Lajis
    MyJurnal
    Biosurfactants are surface active compounds and amphiphatic in nature which consist of
    hydrophilic head and hydrophobic tail accumulating at the interphase of two immiscible liquid
    with different polarity. A study was conducted to investigate the effectiveness of sunflower oil in
    the production of rhamnolipids (RLs) by locally isolated Pseudomonas aeruginosa in shake flask
    fermentation. In this process, four different fermentation treatments were done for seven days at
    30°C and 180 rpm. Sampling was carried out in time intervals of 24 h followed by monitoring of
    cell growth and biosurfactants production. Colorimetric Orcinol analysis was used for
    determination of RLs concentrations (g/L). The RLs were studied for emulsification activity
    using emulsification index (E24%) methods. In addition, oil displacement activity and thermal
    stability were also studied (4-120°C). All treatments allow the growth of P. aeruginosa and the
    utilization of sunflower oil as carbon source and glucose as growth initiator were observed to be
    the best strategy for maximum RLs production. The maximum RLs production was achieved
    after 120 h with 3.18 g/L of RLs. Diesel shows the highest emulsification activity among the
    substrate tested ranging from 55.56% - 60.00%. The oil displacement activity was corresponding
    to RLs concentration with stability up to 120°C (for 60 min). Therefore, from this research a
    good potential of RLs that may provide good application for industry were produced.
  3. Lee YY, Tang TK, Lai OM
    J Food Sci, 2012 Aug;77(8):R137-44.
    PMID: 22748075 DOI: 10.1111/j.1750-3841.2012.02793.x
    Medium- and long-chain triacylglycerol (MLCT) is a modified lipid containing medium- chain (C6-C12) and long-chain fatty acids (C14-C24) in the same triacylglycerol (TAG) molecule. It can be produced either through enzymatic (with 1,3 specific or nonspecific enzyme) or chemical methods. The specialty of this structured lipid is that it is metabolized differently compared to conventional fats and oils, which can lead to a reduction of fat accumulation in the body. Therefore, it can be used for obesity management. It also contains nutritional properties that can be used to treat metabolic problems. This review will discuss on the health benefits of MLCT, its production methods especially via enzymatic processes and its applications in food industries.
  4. How KN, Chang HW, Lai OM
    J Cosmet Dermatol, 2023 Oct;22(10):2746-2754.
    PMID: 37143441 DOI: 10.1111/jocd.15793
    BACKGROUND: Little is known about antioxidant efficacy of topical vitamin E on atopic dermatitis (AD) due to lack of controlled clinical studies.

    AIM: The study evaluates the effectiveness and safety of a topical moisturizer containing tocotrienol-rich composition over 12 weeks on patients aged between 1 month and 12 years with mild to moderate AD.

    METHODS: We conducted a 12 weeks, prospective, open-label clinical study on the effect of tocotrienol as an adjunct to conventional treatment. This study was approved by the Ethics Committee for Research Involving Human Subject. JKEUPM-2019-274 (NMMR-19-1588-49234).

    RESULTS: Thirty AD patients with a mean age of 2.77 ± 3.05 were enrolled in the study. At week-12, significant reduction of investigator global assessment (63.4%), Patient-Oriented Scoring Atopic Dermatitis Index (PO-SCORAD) (65%), and SCORAD (52.3%) was noted (p 

  5. Khoramnia A, Ebrahimpour A, Ghanbari R, Ajdari Z, Lai OM
    Biomed Res Int, 2013;2013:954542.
    PMID: 23971051 DOI: 10.1155/2013/954542
    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.
  6. Karim NA, Noor AM, Lee YY, Lai OM
    J Food Sci, 2015 Dec;80(12):C2678-85.
    PMID: 26523850 DOI: 10.1111/1750-3841.13119
    The oxidative and thermal stability of low diglycerides palm oil produced via silica treatment (sPO) and enzymatic treatment (ePO) compared with standard quality palm oil (SQ) and premium quality palm oil (PQ) was investigated. Both of the oils displayed better oxidative stability compared with SQ as well as significantly higher (P < 0.05) thermal resistance and oxidative strength than SQ and PQ due to lower amounts of partial glycerides. Although the initial induction periods (IPs) of sPO and ePO were significantly lower compared with SQ and PQ, both the oils showed slower drops in their IP values. The darkening effect after frying was significantly (P < 0.05) slower in sPO compared with SQ, PQ, and ePO. Besides, there is no difference p > 0.05 in the rate of FFA formation between sPO and PQ. The anisidine value and peroxide values were lowest in sPO, followed by ePO, PQ, and SQ.
  7. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
  8. Goh KM, Lai OM, Abas F, Tan CP
    Food Chem, 2017 Jan 15;215:200-8.
    PMID: 27542468 DOI: 10.1016/j.foodchem.2016.07.146
    Soy sauce fermentation was simulated in a laboratory and subjected to 10min of sonication. A full factorial design, including different cycles, probe size, and amplitude was used. The composition of 17 free-amino acids (FAAs) was determined by the AccQ-Tag method with fluorescent detection. Main effect plots showed total FAAs extraction was favoured under continuous sonication at 100% amplitude using a 14mm diameter transducer probe, reaching 1214.2±64.3mg/100ml of total FAAs. Moreover, after 7days of fermentation, sonication treatment caused significantly higher levels (p<0.05) of glutamic acids (343.0±22.09mg/100g), total FAAs (1720.0±70.6mg/100g), and essential FAAs (776.3±7.0mg/100g) 3days sooner than the control. Meanwhile, enzymatic and microbial behaviours remained undisturbed. Collectively, the sonication to moromi resulted in maturation 57% faster than the untreated control.
  9. Jiang C, Ma B, Song S, Lai OM, Cheong LZ
    J Agric Food Chem, 2018 Jul 11;66(27):7131-7138.
    PMID: 29902005 DOI: 10.1021/acs.jafc.8b01393
    Phospholipid composition in the milk fat globule membrane (MFGM) fluctuates during the entire lactation period in order to suit the growing needs of newborn infants. The present study elucidated and relatively quantified phospholipid molecular species extracted from human milk (HM), mature human milk (MHM), and infant formulas (with or without MFGM supplementation) using hydrophilic liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry (HILIC-ESI-IT-TOF-MS) system. Principal component analysis was used to clarify the differences between phospholipid composition in HM, MHM, and infant formulas. HM and MHM contained high concentrations of sphingomyeline (HM: 107.61 μg/mL, MHM: 227.18 μg/mL), phosphatidylcholine (HM: 59.96 μg/mL, MHM: 50.77 μg/mL), and phosphatidylethanolamine (PE) (HM: 25.24 μg/mL, MHM: 31.76 μg/mL). Significant concentrations (<300 ng/mL) of arachidonic, eicosapentanoic, and docosahexanoic acids were found to esterify to PE in HM and MHM. Meanwhile, all infant formulas were found to contain high concentrations of phosphatidic acids indicating the possibility of degradation of the fortified MFGM either during processing or storage of the infant formulas.
  10. Cheng C, Shen C, Lai OM, Tan CP, Cheong LZ
    Anal Methods, 2021 Nov 04;13(42):4974-4984.
    PMID: 34661208 DOI: 10.1039/d1ay01307f
    Protox inhibiting herbicides such as nitrofen have detrimental effects on the environment and human health. The current work aims to fabricate a Candida rugosa lipase (CRL)-based electrochemical sensor for rapid and sensitive detection of protox inhibiting herbicides (nitrofen). We proposed the use of poly(vinylpyrrolidone) (PVP) and amino-acids to promote accumulation of Zn2+ ions at the surfaces of Candida rugosa lipase (CRL) and subsequently induce self-assembly of a CRL-zeolitic imidazolate framework (ZIF) structure. This process can be easily and rapidly achieved via a one-pot facile self-assembly method. Steady-state fluorescence spectroscopy indicated that CRL has undergone a conformational change following encapsulation within the ZIF structure. This conformational change is beneficial as the prepared PVP/Glu/CRL@ZIF-8 exhibited enhanced catalytic activity (207% of native CRL), and higher substrate affinity (lower Km than native CRL) and showed high stability under harsh denaturing conditions. PVP/Glu/CRL@ZIF-8 was finally used for electrochemical biosensing of nitrofen. The fabricated biosensor has a wide linear detection range (0-100 μM), a lower limit of detection and a good recovery rate.
  11. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM
    J Biomed Biotechnol, 2011;2011:702179.
    PMID: 21960739 DOI: 10.1155/2011/702179
    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.
  12. Chua JX, Durrant LG, Chok YL, Lai OM
    iScience, 2022 Nov 18;25(11):105379.
    PMID: 36277260 DOI: 10.1016/j.isci.2022.105379
    The emergence of SARS-CoV-2 variants raises concerns of reduced COVID-19 vaccine efficacy. We investigated the humoral immunity in uninfected and previously infected ChAdOx1 nCoV-19, BNT162b2 and CoronaVac vaccinees, who have received complete regimes of vaccines by means of a SARS-CoV-2 surrogate virus blocking test. The ChAdOx1 nCoV-19 (p = 0.0013) and BNT162b2 (p = 0.0005) vaccines induced significant higher blocking activity with longer durability against the Spike (S) protein receptor binding domain (RBD) of wild type SARS-CoV-2 than the CoronaVac vaccine in uninfected vaccinees. Prior infection improved protection in the CoronaVac vaccinees. Subsequent investigation on the breadth of SARS-CoV-2 vaccine-induced antibody blocking responses, revealed that all vaccine platforms cross-protected uninfected vaccinees against all variant of concerns, except Omicron. Prior infection protected the ChAdOx1 nCoV-19 and BNT162b2 vaccinees against Omicron but not CoronaVac vaccinees. Our study suggests that vaccines that induce broader sterilizing immunity are essential to fight against fast-emerging variants.
  13. Chew SC, Tan CP, Lai OM, Nyam KL
    Food Sci Biotechnol, 2018 Jun;27(3):905-914.
    PMID: 30263818 DOI: 10.1007/s10068-017-0295-8
    An optimized refining process for kenaf seed oil was conducted. The 3-monochloro-1,2-propanediol (3-MCPD) contents, triacylglycerol composition, fatty acids composition, bioactive compounds, phosphorus contents, and oxidation indexes of the kenaf seed oil during each stage of the refining process were determined. The results showed that there was no detected 3-MCPD ester in kenaf seed oil throughout the refining process. Deodorization had slightly increased the 2-MCPD ester (9.0 μg/kg) and glycidyl ester (54.8 μg/kg). Oleic (36.53%) and linoleic acids (36.52%) were presented in the largest amount in the refined kenaf seed oil, and triacylglycerols contributed to 99.96% in the oil. There was a removal of 31.6% of phytosterol content and 17.1% of tocopherol and tocotrienol contents in kenaf seed oil after refining. The refining process was totally removed the hydroperoxides, 93% of free fatty acids and 98.8% of phosphorus content in kenaf seed oil.
  14. Lee YY, Tang TK, Phuah ET, Karim NA, Alwi SM, Lai OM
    J Food Sci Technol, 2015 Feb;52(2):685-96.
    PMID: 25694677 DOI: 10.1007/s13197-013-1065-0
    Structured lipid such as medium-and long-chain triacylglycerol (MLCT) is claimed to be able to suppress body fat accumulation and be used to manage obesity. Response surface methodology (RSM) with four factors and three levels (+1,0,-1) faced centered composite design (FCCD) was employed for optimization of the enzymatic interesterification conditions of palm-based MLCT (P-MLCT) production. The effect of the four variables namely: substrate ratio palm kernel oil: palm oil, PKO:PO (40:60-100:0 w/w), temperature (50-70 °C), reaction time (0.5-7.5 h) and enzyme load (5-15 % w/w) on the P-MLCT yield (%) and by products (%) produced were investigated. The responses were determined via acylglycerol composition obtained from high performance liquid chromatography. Well-fitted models were successfully established for both responses: P-MLCT yield (R (2) = 0.9979) and by-products (R (2) = 0.9892). The P-MLCT yield was significantly (P  0.05). Substrate ratio PKO: PO (100:0 w/w) gave the highest yield of P-MLCT (61 %). Nonetheless, substrate ratio of PKO: PO (90:10w/w) was chosen to improve the fatty acid composition of the P-MLCT. The optimized conditions for substrate ratio PKO: PO (90:10 w/w) was 7.26 h, 50 °C and 5 % (w/w) Lipozyme TLIM lipase, which managed to give 60 % yields of P-MLCT. Up scaled results in stirred tank batch reactor gave similar yields as lab scale. A 20 % increase in P-MLCT yield was obtained via RSM. The effect of enzymatic interesterification on the physicochemical properties of PKO:PO (90:10 w/w) were also studied. Thermoprofile showed that the P-MLCT oil melted below body temperature of 37 °C.
  15. Loo JL, Khoramnia A, Lai OM, Long K, Ghazali HM
    Molecules, 2014 Jun 23;19(6):8556-70.
    PMID: 24959682 DOI: 10.3390/molecules19068556
    Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
  16. Lee YY, Tang TK, Ab Karim NA, Alitheen NB, Lai OM
    Food Funct, 2014 Jan;5(1):57-64.
    PMID: 24247642 DOI: 10.1039/c3fo60358j
    Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.
  17. Latip RA, Lee YY, Tang TK, Phuah ET, Tan CP, Lai OM
    Food Chem, 2013 Dec 15;141(4):3938-46.
    PMID: 23993569 DOI: 10.1016/j.foodchem.2013.05.114
    The stearin fraction of palm-based diacylglycerol (PDAGS) was produced from dry fractionation of palm-based diacylglycerol (PDAG). Bakery shortening blends were produced by mixing PDAGS with either palm mid fraction, PMF (PDAGS/PMF), palm olein, POL(PDAGS/POL) or sunflower oil, SFO (PDAGS/SFO) at PDAGS molar fraction of XPDAGS=0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%. The physicochemical results obtained indicated that C16:0 and C18:1 were the dominant fatty acids for PDAGS/PMF and PDAGS/POL, while C18:1 and C18:2 were dominant in the PDAGS/SFO mixtures. SMP and SFC of the PDAGS were reduced with the addition of PMF, POL and SFO. Binary mixtures of PDAGS/PMF had better structural compatibility and full miscibility with each other. PDAGS/PMF and PDAGS/SFO crystallised in β'+β polymorphs in the presence of 0.4-0.5% PDAGS while PDAGS/POL resulted in β polymorphs crystal. The results gave indication that PDAGS: PMF at 50%:50% and 60%:40% (w/w) were the most suitable fat blend to be used as bakery shortening.
  18. Thoo YY, Ho SK, Abas F, Lai OM, Ho CW, Tan CP
    Molecules, 2013 Jun 14;18(6):7004-22.
    PMID: 23771061 DOI: 10.3390/molecules18067004
    Antioxidants have been widely used in the food industry to enhance product quality by preventing oxidation of susceptible substances. This work was carried out to maximise the recovery of total phenolic content (TPC), total flavonoid content (TFC), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging capacity and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity from Morinda citrifolia fruit via modification of the ethanol concentration, extraction time and extraction temperature at minimal processing cost. The optimised conditions yielded values of 881.57 ± 17.74 mg GAE/100 g DW for TPC, 552.53 ± 34.16 mg CE/100 g DW for TFC, 799.20 ± 2.97 µmol TEAC/100 g DW for ABTS and 2,317.01 ± 18.13 µmol TEAC/100 g DW for DPPH were 75% ethanol, 40 min of time and 57 °C. The four responses did not differ significantly (p > 0.05) from predicted values, indicating that models obtained are suitable to the optimisation of extraction conditions for phenolics from M. citrifolia. The relative amounts of flavonoids were 0.784 ± 0.01 mg quercetin/g of extract and 1.021 ± 0.04 mg rutin/g of extract. On the basis of the results obtained, M. citrifolia extract can be used as a valuable bioactive source of natural antioxidants.
  19. Ab Latip R, Lee YY, Tang TK, Phuah ET, Lee CM, Tan CP, et al.
    PeerJ, 2013;1:e72.
    PMID: 23682348 DOI: 10.7717/peerj.72
    Fractionation which separates the olein (liquid) and stearin (solid) fractions of oil is used to modify the physicochemical properties of fats in order to extend its applications. Studies showed that the properties of fractionated end products can be affected by fractionation processing conditions. In the present study, dry fractionation of palm-based diacylglycerol (PDAG) was performed at different: cooling rates (0.05, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0°C/min), end-crystallisation temperatures (30, 35, 40, 45 and 50°C) and agitation speeds (30, 50, 70, 90 and 110 rpm) to determine the effect of these parameters on the properties and yield of the solid and liquid portions. To determine the physicochemical properties of olein and stearin fraction: Iodine value (IV), fatty acid composition (FAC), acylglycerol composition, slip melting point (SMP), solid fat content (SFC), thermal behaviour tests were carried out. Fractionation of PDAG fat changes the chemical composition of liquid and solid fractions. In terms of FAC, the major fatty acid in olein and stearin fractions were oleic (C18:1) and palmitic (C16:0) respectively. Acylglycerol composition showed that olein and stearin fractions is concentrated with TAG and DAG respectively. Crystallization temperature, cooling rate and agitation speed does not affect the IV, SFC, melting and cooling properties of the stearin fraction. The stearin fraction was only affected by cooling rate which changes its SMP. On the other hand, olein fraction was affected by crystallization temperature and cooling rate but not agitation speed which caused changes in IV, SMP, SFC, melting and crystallization behavior. Increase in both the crystallization temperature and cooling rate caused a reduction of IV, increment of the SFC, SMP, melting and crystallization behaviour of olein fraction and vice versa. The fractionated stearin part melted above 65°C while the olein melted at 40°C. SMP in olein fraction also reduced to a range of 26 to 44°C while SMP of stearin fractions increased to (60-62°C) compared to PDAG.
  20. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links