Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Abd Rani NZ, Kumolosasi E, Jasamai M, Jamal JA, Lam KW, Husain K
    BMC Complement Altern Med, 2019 Dec 11;19(1):361.
    PMID: 31829185 DOI: 10.1186/s12906-019-2776-1
    BACKGROUND: Moringa oleifera Lam. is a commonly used plant in herbal medicine and has various reported bioactivities such as antioxidant, antimicrobial, anticancer and antidiabetes. It is rich in nutrients and polyphenols. The plant also has been traditionally used for alleviating allergic conditions. This study was aimed to examine the anti-allergic activity of M. oleifera extracts and its isolated compounds.

    METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release.

    RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate.

    CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.

  2. Leong SW, Abas F, Lam KW, Shaari K, Lajis NH
    Bioorg Med Chem, 2016 08 15;24(16):3742-51.
    PMID: 27328658 DOI: 10.1016/j.bmc.2016.06.016
    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.
  3. Lam KW, Syahida A, Ul-Haq Z, Abdul Rahman MB, Lajis NH
    Bioorg Med Chem Lett, 2010 Jun 15;20(12):3755-9.
    PMID: 20493688 DOI: 10.1016/j.bmcl.2010.04.067
    A series of 16 oxadiazole and triazolothiadiazole derivatives were designed, synthesized and evaluated as mushroom tyrosinase inhibitors. Five derivatives were found to display high inhibition on the tyrosinase activity ranging from 0.87 to 1.49 microM. Compound 5 exhibited highest tyrosinase inhibitory activity with an IC(50) value of 0.87+/-0.16 microM. The in silico protein-ligand docking using AUTODOCK 4.1 was successfully performed on compound 5 with significant binding energy value of -5.58 kcal/mol. The docking results also showed that the tyrosinase inhibition might be due to the metal chelating effect by the presence of thione functionality in compounds 1-5. Further studies revealed that the presence of hydrophobic group such as cycloamine derivatives played a major role in the inhibition. Piperazine moiety in compound 5 appeared to be involved in an extensive hydrophobic contact and a 2.9A hydrogen bonding with residue Glu 182 in the active site.
  4. Leong SW, Abas F, Lam KW, Yusoff K
    Bioorg Med Chem Lett, 2018 02 01;28(3):302-309.
    PMID: 29292226 DOI: 10.1016/j.bmcl.2017.12.048
    A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds (19, 20, 21, 24, 27, 28, 29, 31, 32, 33 and 34) were found to significantly inhibit α-glucosidase in which compounds 28, 31 and 32 demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 µM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Molecular docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor.
  5. Mohd Aluwi MF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, et al.
    Bioorg Med Chem Lett, 2016 05 15;26(10):2531-8.
    PMID: 27040659 DOI: 10.1016/j.bmcl.2016.03.092
    The syntheses and bioactivities of symmetrical curcumin and its analogues have been the subject of interest by many medicinal chemists and pharmacologists over the years. To improve our understanding, we have synthesized a series of unsymmetrical monocarbonyl curcumin analogues and evaluated their effects on prostaglandin E2 production in lipopolysaccharide-induced RAW264.7 and U937 cells. Initially, compounds 8b and 8c exhibited strong inhibition on the production of PGE2 in both LPS-stimulated RAW264.7 (8b, IC50=12.01μM and 8c, IC50=4.86μM) and U937 (8b, IC50=3.44μM and 8c, IC50=1.65μM) cells. Placing vanillin at position Ar2 further improved the potency when both compounds 15a and 15b significantly lowered the PGE2 secretion level (RAW264.7: 15a, IC50=0.78μM and 15b, IC50=1.9μM while U937: 15a, IC50=0.95μM and 15b, IC50=0.92μM). Further experiment showed that compounds 8b, 8c, 15a and 15b did not target the activity of downstream inflammatory COX-2 mediator. Finally, docking simulation on protein targets COX-2, IKK-β, ERK, JNK2, p38α and p38β were performed using the conformation of 15a determined by single-crystal XRD.
  6. Leong SW, Mohd Faudzi SM, Abas F, Mohd Aluwi MF, Rullah K, Lam KW, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3330-7.
    PMID: 26071636 DOI: 10.1016/j.bmcl.2015.05.056
    A series of twenty-four 2-benzoyl-6-benzylidenecyclohexanone analogs were synthesized and evaluated for their nitric oxide inhibition and antioxidant activity. Six compounds (3, 8, 10, 17, 18 and 19) were found to exhibit significant NO inhibitory activity in LPS/IFN-induced RAW 264.7 macrophages, of which compound 10 demonstrated the highest activity with the IC50 value of 4.2 ± 0.2 μM. Furthermore, two compounds (10 and 17) displayed antioxidant activity upon both the DPPH scavenging and FRAP analyses. However, none of the 2-benzoyl-6-benzylidenecyclohexanone analogs significantly scavenged NO radical. Structure-activity comparison suggested that 3,4-dihydroxylphenyl ring is crucial for bioactivities of the 2-benzoyl-6-benzylidenecyclohexanone analogs. The results from this study and the reports from previous studies indicated that compound 10 could be a candidate for further investigation on its potential as a new anti-inflammatory agent.
  7. Akhtar MN, Lam KW, Abas F, Maulidiani, Ahmad S, Shah SA, et al.
    Bioorg Med Chem Lett, 2011 Jul 1;21(13):4097-103.
    PMID: 21641207 DOI: 10.1016/j.bmcl.2011.04.065
    Bioassay-guided extraction of the stem bark of Knema laurina showed the acetylcholinesterase (AChE) inhibitory activity of DCM and hexane fractions. Further repeated column chromatography of hexane and DCM fractions resulted in the isolation and purification of five alkenyl phenol and salicylic acid derivatives. New compounds, (+)-2-hydroxy-6-(10'-hydroxypentadec-8'(E)-enyl)benzoic acid (1) and 3-pentadec-10'(Z)-enylphenol (2), along with known 3-heptadec-10'(Z)-enylphenol (3), 2-hydroxy-6-(pentadec-10'(Z)-enyl)benzoic acid (4), and 2-hydroxy-6-(10'(Z)-heptadecenyl)benzoic acid (5) were isolated from the stem bark of this plant. Compounds (1-5) were tested for their acetylcholinesterase inhibitory activity. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and chemical derivatizations. Compound 5 showed strong acetylcholinesterase inhibitory activity with IC(50) of 0.573 ± 0.0260 μM. Docking studies of compound 5 indicated that the phenolic compound with an elongated side chain could possibly penetrate deep into the active site of the enzyme and arrange itself through π-π interaction, H-bonding, and hydrophobic contacts with some critical residues along the complex geometry of the active gorge.
  8. Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al.
    Chem Biol Drug Des, 2014 Feb;83(2):198-206.
    PMID: 24433224 DOI: 10.1111/cbdd.12226
    Inhibitory effects on neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species (ROS) are among the important targets in developing anti-inflammatory agents and immunosuppressants. Eight series of chalcone derivatives including five newly synthesized series were assessed for their inhibitory effects on chemotaxis, phagocytosis and ROS production in human polymorphonuclear neutrophils (PMNs). Inhibition of PMNs' chemotaxis and phagocytosis abilities were investigated using the Boyden chamber technique and the Phagotest kit, respectively, while ROS production was evaluated using luminol- and lucigenin-based chemiluminescence assay. The new derivatives (4d and 8d), which contain 4-methylaminoethanol functional group were active in all the assays performed. It was also observed that some of the compounds were active in inhibiting chemotaxis while others suppressed phagocytosis and ROS production. The information obtained gave new insight into chalcone derivatives with the potential to be developed as immunomodulators.
  9. Zifruddin AN, Mohamad Yusoff MA, Abd Ghani NS, Nor Muhammad NA, Lam KW, Hassan M
    Comput Biol Chem, 2023 Apr;103:107811.
    PMID: 36645937 DOI: 10.1016/j.compbiolchem.2023.107811
    Metisa plana (Lepidoptera: Psychidae) bagworm is a leaf-eater caterpillar ubiquitously found as a damaging pest in oil palm plantations, specifically in Malaysia. Various strategies have been implemented, including the usage of chemical insecticides. However, the main challenges include the development of insecticide resistance and its detrimental effects on the environment and non-target organisms. Therefore, a biorational insecticide is introduced by targeting the juvenile hormone (JH) biosynthetic pathway, which is mainly present in the insect and vital for the insect's growth, diapause, metamorphosis, and adult reproduction. This study aimed to investigate the potential inhibitor for the rate-limiting enzyme involved in the JH pathway known as farnesol dehydrogenase. A 255 amino acids sequence encoded for the putative M. plana farnesol dehydrogenase (MpFolDH) open reading frame had been identified and isolated. The three-dimensional structure of MpFolDH was predicted to have seven β- sheets with α-helices at both sides, showing typical characteristics for classical short-chain dehydrogenase and associated with oxidoreductase activity. Then, the ensemble-based virtual screening was conducted based on the ZINC20 database, in which 43 768 compounds that fulfilled pesticide-likeness criteria were screened by site-specific molecular docking. After a short molecular dynamics simulation (5 ns) was conducted towards 102 compounds, only the top 10 compounds based on their most favourable binding energy were selected for a more extended simulation (100 ns). Based on the protein-ligand stability, protein compactness, residues rigidity, binding interaction, binding energy throughout the 100 ns simulation, and physicochemical analysis, ZINC000408743205 was selected as a potential inhibitor for this enzyme. Amino acids decomposition analysis indicates Ile18, Ala95, Val198 and Val202 were the critical contributor residues for MpFolDH-inhibitors(s) complex.
  10. Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, et al.
    PMID: 38619217 DOI: 10.1080/10408398.2024.2341266
    Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
  11. Khor PY, Mohd Aluwi MFF, Rullah K, Lam KW
    Eur J Med Chem, 2019 Dec 01;183:111704.
    PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704
    Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
  12. Islam R, Lam KW
    Eur J Med Chem, 2020 Dec 01;207:112812.
    PMID: 32937283 DOI: 10.1016/j.ejmech.2020.112812
    Triple-negative breast cancer (TNBC) is the most aggressive type of cancer, with a high risk of death on recurrence. To date, there is a lack of approved targeted agents for the treatment of the disease. Patients with TNBC continue to depend on surgery, chemotherapy, and radiotherapy, all of which have a wide side effect profile. In the present review, we highlight the current progress and exciting developments in the small-molecule targeted therapy for the treatment of TNBC. Finally, we also discuss the prospect of combining targeted therapy and immunotherapy for the effective treatment of TNBC.
  13. Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al.
    Eur J Pharmacol, 2011 Feb 10;652(1-3):136-44.
    PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092
    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
  14. Tham CL, Liew CY, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Eur J Pharmacol, 2010 Feb 25;628(1-3):247-54.
    PMID: 19958764 DOI: 10.1016/j.ejphar.2009.11.053
    Curcumin is a highly pleiotropic molecule with significant regulatory effects upon inflammation and inflammatory related diseases. However curcumin has one major important limitation in which it has poor bioavailability. Design of synthetic structural derivatives of curcumin is but one approach that has been used to overcome its poor bioavailability while retaining, or further enhancing, its drug-like effects. We have synthesized a series of curcumin analogues and describe the effects of 2,6-bis-4-(hydroxyl-3-methoxy-benzylidine)-cyclohexanone or BHMC upon nitric oxide and cytokine synthesis in cellular models of inflammation. BHMC showed a significant dose-response inhibitory action upon the synthesis of NO and we have shown that this effect was due to suppression of both iNOS gene and enzyme expression without any effects upon scavenging of nitrite. We also demonstrated that BHMC has a very minimal effect upon iNOS activity with no effect at all upon the secretion of PGE(2) but has a strong inhibitory effect upon MCP-1 and IL-10 secretion and gene expression. Secretion and gene expression of TNF-alpha and IL-6 were moderately inhibited whereas IL-8 and IL-1beta were not altered. We conclude that BHMC selectively inhibits the synthesis of several inflammatory mediators. BHMC should be considered a promising drug lead for preclinical and further pharmacological studies.
  15. Chia LL, Jantan I, Chua KH, Lam KW, Rullah K, Aluwi MF
    Front Pharmacol, 2016;7:291.
    PMID: 27625609 DOI: 10.3389/fphar.2016.00291
    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl.
  16. Goh YX, Jalil J, Lam KW, Husain K, Premakumar CM
    Front Pharmacol, 2022;13:820969.
    PMID: 35140617 DOI: 10.3389/fphar.2022.820969
    Nowadays, non-resolving inflammation is becoming a major trigger in various diseases as it plays a significant role in the pathogenesis of atherosclerosis, asthma, cancer, obesity, inflammatory bowel disease, chronic obstructive pulmonary disease, neurodegenerative disease, multiple sclerosis, and rheumatoid arthritis. However, prolonged use of anti-inflammatory drugs is usually accompanied with undesirable effects and hence more patients tend to seek for natural compounds as alternative medicine. Considering the fact above, there is an urgency to discover and develop potential novel, safe and efficacious natural compounds as drug candidates for future anti-inflammatory therapy. Genistein belongs to the flavonoid family, in the subgroup of isoflavones. It is a phytoestrogen that is mainly derived from legumes. It is a naturally occurring chemical constituent with a similar chemical structure to mammalian estrogens. It is claimed to exert many beneficial effects on health, such as protection against osteoporosis, reduction in the risk of cardiovascular disease, alleviation of postmenopausal symptoms and anticancer properties. In the past, numerous in vitro and in vivo studies have been conducted to investigate the anti-inflammatory potential of genistein. Henceforth, this review aims to summarize the anti-inflammatory properties of genistein linking with the signaling pathways and mediators that are involved in the inflammatory response as well as its toxicity profile. The current outcomes are analysed to highlight the prospect as a lead compound for drug discovery. Data was collected using PubMed, ScienceDirect, SpringerLink and Scopus databases. Results showed that genistein possessed strong anti-inflammatory activities through inhibition of various signaling pathways such as nuclear factor kappa-B (NF-κB), prostaglandins (PGs), inducible nitric oxide synthase (iNOS), proinflammatory cytokines and reactive oxygen species (ROS). A comprehensive assessment of the mechanism of action in anti-inflammatory effects of genistein is included. However, evidence for the pharmacological effects is still lacking. Further studies using various animal models to assess pharmacological effects such as toxicity, pharmacokinetics, pharmacodynamics, and bioavailability studies are required before clinical studies can be conducted. This review will highlight the potential use of genistein as a lead compound for future drug development as an anti-inflammatory agent.
  17. Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, et al.
    Future Med Chem, 2024 Jan;16(1):75-99.
    PMID: 38205612 DOI: 10.4155/fmc-2023-0174
    Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
  18. Razali NSC, Lam KW, Rajab NF, Jamal ARA, Kamaludin NF, Chan KM
    Genes Environ, 2024 Feb 01;46(1):4.
    PMID: 38303058 DOI: 10.1186/s41021-023-00297-y
    BACKGROUND: Previously, we have reported on the two curcuminoid analogues with piperidone derivatives, namely FLDP-5 and FLDP-8 have more potent anti-proliferative and anti-migration effects than curcumin. In this study, we further investigated the mode of cell death and the mechanism involved in the cell death process induced by these analogues on human glioblastoma LN-18 cells.

    RESULTS: The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process.

    CONCLUSION: The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.

  19. Liew CY, Tham CL, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Immunopharmacol Immunotoxicol, 2010 Sep;32(3):495-506.
    PMID: 20109039 DOI: 10.3109/08923970903575708
    HMP [3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone] was evaluated for its ability to inhibit the synthesis of major proinflammatory mediators and cytokines in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells and phorbol myristate acetate (PMA)-differentiated/LPS-induced U937 cells. HMP suppressed the production of nitric oxide (NO) with significant inhibitory effects at doses as low as 0.78 microM (P < 0.05). Prostaglandin E2 (PGE2) secretion was also inhibited at doses of 12.5 microM and above (P < 0.01). The secretion of both TNF-alpha and IL-6 were only inhibited at the highest dose used (25 microM; P < 0.001). IL-1beta secretion was also inhibited from 12.5 microM onwards (P < 0.01). This inhibition was demonstrated to be caused by down-regulation of inducible enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), without direct effect upon iNOS or COX-2 enzyme activity. HMP only inhibited iNOS (P < 0.001) and IL-1beta (P < 0.05) gene expression at the highest tested concentration. HMP did not affect the secretion of chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10. The most striking effect of HMP was its NO inhibitory activity and therefore we conclude that HMP is a selective inhibitor of iNOS.
  20. Satyaveanthan MV, Ng CL, Awang A, Lam KW, Hassan M
    Insect Mol Biol, 2023 Apr;32(2):143-159.
    PMID: 36454188 DOI: 10.1111/imb.12820
    In Southeast Asia, Conopomorpha cramerella (Snellen) which is commonly known as the cocoa pod borer (CPB) moth has been identified as the most detrimental pest of Theobroma cacao L. Apart from the various side effects on human health and non-target organisms, heavily relying on synthetic pyrethroid insecticides to control CPB infestations also increases the environmental contamination risks. Thus, developing biorational insecticides that minimally affect the non-target organism and environment by targeting the insect growth regulation process is needed to manage the pest population. In insects, juvenile hormones (JH) regulate critical biological events, especially metamorphosis, development and reproduction. Since the physiological roles of JH III vary among different organisms, the biochemical properties, especially substrate specificity and analogue inhibition, may also be different. Therefore, studies on the JH III biosynthetic pathway enzymes in both plants and insects are beneficial to discover more effective analogues. Bioinformatic analysis and biochemical characterization of a NADP+ -dependent farnesol dehydrogenase, an intermediate enzyme of the JH III pathway, from C. cramerella (CcFolDH), were described in this study. In addition, the farnesol analogues that may act as a potent analogue inhibitor for CcFolDH ware determined using in vitro enzymatic study. The phylogenetic analysis indicated that CcFolDH shared a close phylogenetic relationship to the honeybee's short-chain dehydrogenase/reductase. The 27 kDa CcFolDH has an NADP(H) binding domain with a typical Rossmann fold and is likely a homotetrameric protein in the solution. The enzyme had a greater preference for substrate trans, trans-farnesol and coenzyme NADP+ . In terms of analogue inhibitor inhibition, hexahydroxyfarnesyl acetone showed the highest inhibition (the lowest Ki ) compared to other farnesol analogues. Thus, hexahydroxyfarnesyl acetone would serve as the most potent active ingredient for future biorational pesticide management for C. cramerella infestation. Based on the bioinformatic analyses and biochemical characterizations conducted in this research, we proposed that rCcFolDH differs slightly from other reported farnesol dehydrogenases in terms of molecular weight, substrate preference, coenzymes utilization and analogue inhibitors selection.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links