Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Rawindran H, Khoo KS, Ethiraj B, Suparmaniam U, Leong WH, Raksasat R, et al.
    Environ Res, 2023 Sep 15;233:116533.
    PMID: 37394167 DOI: 10.1016/j.envres.2023.116533
    Changing the growth environment for microalgae can overall lead to the fundamental alteration in cellular biochemicals whilst attaching onto palm kernel expeller (PKE) waste to form adhesion complex in easing harvesting at stationary growth phase. This study had initially optimized the PKE dosage, light intensity and photoperiod in maximizing the attached microalgal productivity being attained at 0.72 g/g day. Lipid content increased progressively from pH 3 to pH 11, with the highest value observed at pH 11. Meanwhile, in terms of protein and carbohydrate contents, the highest values were obtained by cultivation medium of pH 5 with 9.92 g and 17.72 g, respectively followed by pH 7 with 9.16 g and 16.36 g, respectively. Moreover, the findings also suggested that the low pH mediums utilized polar interactions in the formation of complexes between PKE and microalgae, whereas at higher pH levels, the non-polar interactions became more significant. The work of attachment was thermodynamically favourable towards the attachment formation with values greater than zero which was also aligned with the microscopic surface topography, i.e., revealing a clustering pattern of microalgae colonizing the PKE surface. These findings contribute to comprehensive understanding of optimizing growth condition and harvesting strategy of attached microalgae in attaining the cellular biochemical components, facilitating the development of efficient and sustainable bioresource utilization.
  2. Leong WH, Azella Zaine SN, Ho YC, Uemura Y, Lam MK, Khoo KS, et al.
    J Environ Manage, 2019 Nov 01;249:109384.
    PMID: 31419674 DOI: 10.1016/j.jenvman.2019.109384
    The microalgal-bacterial co-cultivation was adopted as an alternative in making microbial-based biofuel production to be more feasible in considering the economic and environmental prospects. Accordingly, the microalgal-bacterial symbiotic relationship was exploited to enhance the microbial biomass yield, while bioremediating the nitrogen-rich municipal wastewater. An optimized inoculation ratio of microalgae and activated sludge (AS:MA) was predetermined and further optimization was performed in terms of different increment ratios to enhance the bioremediation process. The nitrogen removal was found accelerating with the increase of the increment ratios of inoculated AS:MA, though all the increment ratios had recorded a near complete total nitrogen removal (94-95%). In light of treatment efficiency and lipid production, the increment ratio of 0.5 was hailed as the best microbial population size in accounting the total nitrogen removal efficiency of 94.45%, while not compromising the lipid production of 0.241 g/L. Moreover, the cultures in municipal wastewater had attained higher biomass and lipid productions of 1.42 g/L and 0.242 g/L, respectively, as compared with the synthetic wastewater which were only 1.12 g/L (biomass yield) and 0.175 g/L (lipid yield). This was possibly due to the presence of trace elements which had contributed to the increase of biomass yield; thus, higher lipid attainability from the microalgal-bacterial culture. This synergistic microalgal-bacterial approach had been proven to be effective in treating wastewater, while also producing useful biomass for eventual lipid production with comparable net energy ratio (NER) value of 0.27, obtained from the life-cycle analysis (LCA) studies. Thereby, contributing towards long-term sustainability and possible commercialization of microbial-based biofuel production.
  3. Munir M, Ahmad M, Mubashir M, Asif S, Waseem A, Mukhtar A, et al.
    Bioresour Technol, 2021 May;328:124859.
    PMID: 33621759 DOI: 10.1016/j.biortech.2021.124859
    The potential of new trimetallic (Ce, Cu, La) loaded montmorillonite clay catalyst for synthesizing biodiesel using novel non-edible Celastrus paniculatus Willd seed oil via two-step transesterification reaction has been reported along with catalyst characterization. Transesterification reaction was optimized and maximum biodiesel yield of 89.42% achieved under optimal operating reaction states like; 1:12 oil to methanol ratio, 3.5% of catalyst amount, 120 °C of reaction temperature for 3 h. The predicted and experimental biodiesel yields under these reaction conditions were 89.42 and 89.40%, which showing less than 0.05% variation. Additionally, optimum biodiesel yield can be predicted by drawing 3D surface plots and 2D contour plots using MINITAB 17 software. For the characterization of the obtained biodiesel, analysis including the GC/MS, FT-IR, 1H NMR and 13C NMR were applied. The fuel properties of obtained biodiesel agrees well with the different European Union (EU-14214), China (GB/T 20828), and American (ASTM-951, 6751) standards.
  4. Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, et al.
    Bioengineered, 2020 12;11(1):328-355.
    PMID: 32138595 DOI: 10.1080/21655979.2020.1736240
    With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
  5. Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HSH, Lam MK, et al.
    Bioresour Technol, 2021 Apr;325:124702.
    PMID: 33487515 DOI: 10.1016/j.biortech.2021.124702
    The accumulation of conventional petroleum-based polymers has increased exponentially over the years. Therefore, algae-based biopolymer has gained interest among researchers as one of the alternative approaches in achieving a sustainable circular economy around the world. The benefits of microalgae biopolymer over other feedstock is its autotrophic complex to reduce the greenhouse gases emission, rapid growing ability with flexibility in diverse environments and its ability to compost that gives greenhouse gas credits. In contrast, this review provides a comprehensive understanding of algae-based biopolymer in the evaluation of microalgae strains, bioplastic characterization and bioplastic blending technologies. The future prospects and challenges on the algae circular bioeconomy which includes the challenges faced in circular economy, issues regard to the scale-up and operating cost of microalgae cultivation and the life cycle assessment on algal-based biopolymer were highlighted. The aim of this review is to provide insights of algae-based biopolymer towards a sustainable circular bioeconomy.
  6. Mohd-Sahib AA, Lim JW, Lam MK, Uemura Y, Isa MH, Ho CD, et al.
    Bioresour Technol, 2017 Sep;239:127-136.
    PMID: 28501685 DOI: 10.1016/j.biortech.2017.04.118
    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability.
  7. Lim JW, Mohd-Noor SN, Wong CY, Lam MK, Goh PS, Beniers JJA, et al.
    J Environ Manage, 2019 Feb 01;231:129-136.
    PMID: 30340132 DOI: 10.1016/j.jenvman.2018.10.022
    The black soldier fly larvae (BSFL) have been widely extolled for the application in managing various solid organic wastes. Owing to the saprophagous nature of BSFL, a rapid valorization of solid organic wastes can be accomplished with the simultaneous production of valuable biochemical compounds derived from larval biomass. In the present works, the mixed waste coconut endosperm (w-CE) and soybean curd residue (SC-r) substrates with increasing protein nutritional constituent were administered to BSFL. The correlations between protein from larval feed substrates and nutritional profiles of BSFL biomasses were ultimately unveiled. The protein from larval feed substrates could be increased by increasing of SC-r portion against w-CE. At the w-CE:SC-r ratio of 3:2, the highest larval total weight gained and growth rate were attained; indicating an optimum protein nutritional constituent in mixed organics (12.4%) that could enhance the BSFL palatability. Further increment of protein nutritional constituent in mixed organics was found acidifying the residual larval feed substrate progressively, undermining the growth of BSFL. By feeding the BSFL with optimum mixed organics, the maximum accumulations of larval lipid and protein could be achieved. Transesterification of extracted lipid had demonstrated high in monounsaturated fatty acids (73%) which was suitable for biodiesel. The BSFL palatability was finally confirmed from the bioconversion viewpoint of mixed organic wastes. Again, achieving the highest bioconversion efficiency of 14% into larval biomass after accounting the metabolic loss of 54%. Therefore, a total of 68% of mixed w-CE and SC-r could be successfully bioconverted.
  8. Wong CY, Lim JW, Chong FK, Lam MK, Uemura Y, Tan WN, et al.
    Environ Res, 2020 06;185:109458.
    PMID: 32247911 DOI: 10.1016/j.envres.2020.109458
    The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.
  9. Liew CS, Yunus NM, Chidi BS, Lam MK, Goh PS, Mohamad M, et al.
    J Hazard Mater, 2022 Feb 05;423(Pt A):126995.
    PMID: 34482076 DOI: 10.1016/j.jhazmat.2021.126995
    The high investment cost required by modern treatment technologies of hazardous sewage sludge such as incineration and anaerobic digestion have discouraged their application by many developing countries. Hence, this review elucidates the status, performances and limitations of two low-cost methods for biological treatment of hazardous sewage sludge, employing vermicomposting and black soldier fly larvae (BSFL). Their performances in terms of carbon recovery, nitrogen recovery, mass reduction, pathogen destruction and heavy metal stabilization were assessed alongside with the mature anaerobic digestion method. It was revealed that vermicomposting and BSFL were on par with anaerobic digestion for carbon recovery, nitrogen recovery and mass reduction. Thermophilic anaerobic digestion was found superior in pathogen destruction because of its high operational temperature. Anaerobic digestion also had proven its ability to stabilize heavy metals, but no conclusive finding could confirm similar application from vermicomposting or BSFL treatment. However, the addition of co-substrates or biochar during vermicomposting or BSFL treatment may show synergistic effects in stabilizing heavy metals as demonstrated by anaerobic digestion. Moreover, vermicomposting and BSFL valorization had manifested their potentialities as the low-cost alternatives for treating hazardous sewage sludge, whilst producing value-added feedstock for biochemical industries.
  10. Liew CS, Mong GR, Abdelfattah EA, Raksasat R, Rawindran H, Kiatkittipong W, et al.
    Environ Res, 2022 Feb 10;210:112923.
    PMID: 35150716 DOI: 10.1016/j.envres.2022.112923
    Black soldier fly larvae (BSFL) have been deployed to valorize various organic wastes. Nonetheless, its growth rate whilst being offered with waste activated sludge (WAS) is not promising, likely by virtue of the presence of extracellular polymeric substances' structure in WAS. In this work, the WAS were first thermally pre-treated under different treatment temperatures and durations before being administered as the feeding substrates for BSFL. The results showed the thermal pre-treatment could improve WAS palatability and subsequently, enhance the growth of BSFL especially after the pre-treatments at 75 °C and above. The highest larva weight gained was recorded at 2.16 mg/larva for the WAS sample being pre-treated at 90 °C and 16 h. Furthermore, the samples pre-treated above 75 °C also achieved higher degradation rates, indicating that the 75 °C was a threshold temperature to effectively hydrolyze the WAS. The changes of WAS characteristics, namely, (i) soluble chemical oxygen demand (SCOD), (ii) soluble carbohydrate, (iii) soluble protein, (iv) humic substances and (v) total soluble protein and humic substances, after the thermal pre-treatments were also studied in correlating with the BSFL growth. Accordingly, a model was successfully developed with the highest R2 value attained at 0.95, evidencing the SCOD was the most suitable WAS characteristic to accurately predict the BSFL growth behavior.
  11. Chong JWR, Khoo KS, Yew GY, Leong WH, Lim JW, Lam MK, et al.
    Bioresour Technol, 2021 Dec;342:125947.
    PMID: 34563823 DOI: 10.1016/j.biortech.2021.125947
    Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.
  12. Ahmad Sobri MZ, Khoo KS, Sahrin NT, Ardo FM, Ansar S, Hossain MS, et al.
    Chemosphere, 2023 Oct;338:139526.
    PMID: 37459926 DOI: 10.1016/j.chemosphere.2023.139526
    The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.
  13. Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, et al.
    Chemosphere, 2023 Oct;339:139699.
    PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699
    Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
  14. Leong WH, Lim JW, Rawindran H, Liew CS, Lam MK, Ho YC, et al.
    Chemosphere, 2023 Nov;341:139953.
    PMID: 37634592 DOI: 10.1016/j.chemosphere.2023.139953
    Life cycle assessments of microalgal cultivation systems are often conducted to evaluate the sustainability and feasibility factors of the entire production chain. Unlike widely reported conventional microalgal cultivation systems, the present work adopted a microalgal-bacterial cultivation approach which was upscaled into a pilot-scale continuous photobioreactor for microalgal biomass production into biodiesel from wastewater resources. A multiple cradle-to-cradle system ranging from microalgal biomass-to-lipid-to-biodiesel was evaluated to provide insights into the energy demand of each processes making up the microalgae-to-biodiesel value chain system. Energy feasibility studies revealed positive NER values (4.95-8.38) for producing microalgal biomass but deficit values for microalgal-to-biodiesel (0.14-0.23), stemming from the high energy input requirements in the downstream processes for converting biomass into lipid and biodiesel accounting to 88-90% of the cumulative energy demand. Although the energy balance for microalgae-to-biodiesel is in the deficits, it is comparable with other reported biodiesel production case studies (0.12-0.40). Nevertheless, the approach to using microalgal-bacterial cultivation system has improved the overall energy efficiency especially in the upstream processes compared to conventional microalgal cultivation systems. Energy life cycle assessments with other microalgal based biofuel systems also proposed effective measures in increasing the energy feasibility either by utilizing the residual biomass and less energy demanding downstream extraction processes from microalgal biomass. The microalgal-bacterial cultivation system is anticipated to offer both environmental and economic prospects for upscaling by effectively exploiting the low-cost nutrients from wastewaters via bioconversion into valuable microalgal biomass and biodiesel.
  15. Raksasat R, Lim JW, Kiatkittipong W, Kiatkittipong K, Ho YC, Lam MK, et al.
    Environ Pollut, 2020 Dec;267:115488.
    PMID: 32891050 DOI: 10.1016/j.envpol.2020.115488
    The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
  16. Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, et al.
    Bioengineered, 2020 12;11(1):61-69.
    PMID: 31884878 DOI: 10.1080/21655979.2019.1704536
    Chlorella sorokiniana CY-1 was cultivated using palm oil mill effluent (POME) in a novel-designed photobioreactor (NPBR) and glass-made vessel photobioreactor (PBR). The comparison was made on biomass and lipid productions, as well as its pollutants removal efficiencies. NPBR is transparent and is developed in thin flat panels with a high surface area per volume ratio. It is equipped with microbubbling and baffles retention, ensuring effective light and CO2 utilization. The triangular shape of this reactor at the bottom serves to ease microalgae cell harvesting by sedimentation. Both biomass and lipid yields attained in NPBR were 2.3-2.9 folds higher than cultivated in PBR. The pollutants removal efficiencies achieved were 93.7% of chemical oxygen demand, 98.6% of total nitrogen and 96.0% of total phosphorus. Mathematical model revealed that effective light received and initial mass contributes toward successful microalgae cultivation. Overall, the results revealed the potential of NPBR integration in Chlorella sorokiniana CY-1 cultivation, with an aim to achieve greater feasibility in microalgal-based biofuel real application and for environmental sustainability.
  17. Azmi AAB, Chew KW, Chia WY, Mubashir M, Sankaran R, Lam MK, et al.
    Bioresour Technol, 2021 Aug;333:125197.
    PMID: 33930672 DOI: 10.1016/j.biortech.2021.125197
    The work aimed to study the potential in producing a system with high microalgal protein recovery and separation by utilizing a one-step or integrated downstream process. This in turn enables green biorefinery of protein, contributing to circular bioeconomy whereby less energy, labor, and cost are required for the process. By utilizing electric three phase partitioning flotation system, high protein recovery yield, R of 99.42 ± 0.52% and high separation efficiency, E of 52.72 ± 0.40% system was developed. Scaling up also showed high protein recovery yield with R value of 89.13 ± 1.56%. Total processing duration (extraction, separation, and purification) was also significantly reduced to 10 min. This system showed remarkable potential in reducing processing time, alternatively cost of production, benefiting microalgal downstream processing. Concisely, through this system, microalgal bioprocessing will no longer be complex allowing a wide array of potentials for further studies in this field.
  18. Cheng YW, Chong CC, Lam MK, Ayoub M, Cheng CK, Lim JW, et al.
    J Hazard Mater, 2021 05 05;409:124964.
    PMID: 33418292 DOI: 10.1016/j.jhazmat.2020.124964
    Thriving oil palm agroindustry comes at a price of voluminous waste generation, with palm oil mill effluent (POME) as the most cumbersome waste due to its liquid state, high strength, and great discharge volume. In view of incompetent conventional ponding treatment, a voluminous number of publications on non-conventional POME treatments is filed in the Scopus database, mainly working on alternative or polishing POME treatments. In dearth of such comprehensive review, all the non-conventional POME treatments are rigorously reviewed in a conceptual and comparative manner. Herein, non-conventional POME treatments are sorted into the five major routes, viz. biological (bioconversions - aerobic/anaerobic biodegradation), physical (flotation & membrane filtration), chemical (Fenton oxidation), physicochemical (photooxidation, steam reforming, coagulation-flocculation, adsorption, & ultrasonication), and bioelectrochemical (microbial fuel cell) pathways. For aforementioned treatments, the constraints, pros, and cons are qualitatively and quantitatively (with compiled performance data) detailed to indicate their process maturity. Authors recommended (i) bioconversions, adsorption, and steam reforming as primary treatments, (ii) flotation and ultrasonication as pretreatments, (iii) Fenton oxidation, photooxidation, and membrane filtration as polishing treatments, and (iv) microbial fuel cell and coagulation-flocculation as pretreatment or polishing treatment. Life cycle assessments are required to evaluate the environmental, economic, and energy aspects of each process.
  19. Liew CS, Kiatkittipong W, Lim JW, Lam MK, Ho YC, Ho CD, et al.
    Chemosphere, 2021 Aug;277:130310.
    PMID: 33774241 DOI: 10.1016/j.chemosphere.2021.130310
    Sewage sludge has long been regarded as a hazardous waste by virtue of the loaded heavy metals and pathogens. Recently, more advanced technologies are introduced to make use of the nutrients from this hazardous sludge. Successful recovery of sludge's carbon content could significantly convert waste to energy and promote energy sustainability. Meanwhile, the recovery of nitrogen and trace minerals allows the production of fertilizers. This review is elucidating the performances of modern thermal treatment technologies in recovering resources from sewage sludge while reducing its environmental impacts. Exhaustive investigations show that most modern technologies are capable of recovering sludge's carbon content for energy generation. Concurrently, the technologies could as well stabilize heavy metals, destroy harmful pathogens, and reduce the volume of sludge to minimize the environmental impacts. Nevertheless, the high initial investment cost still poses a huge hurdle for many developing countries. Since the initial investment cost is inevitable, the future works should focus on improving the profit margin of thermal technologies; so that it would be more financially attractive. This can be done through process optimization, improved process design as well as the use of suitable co-substrates, additives, and catalyst as propounded in the review.
  20. Wan Osman WNA, Mat Nawi NI, Samsuri S, Bilad MR, Khan AL, Hunaepi H, et al.
    Heliyon, 2021 Jun;7(6):e07367.
    PMID: 34222699 DOI: 10.1016/j.heliyon.2021.e07367
    Microalgae-based products have gained growing interest leading to an increase in large-scale cultivation. However, the high energy associated with microalgae harvesting becomes one of the bottlenecks. This study evaluated an energy-efficient microalga harvesting via ultra-low-pressure membrane (ULPM) filtration (<20 kPa) in combination with aeration. ULPM offered various benefits especially in terms of reducing the energy consumption due to it operated under low transmembrane pressure (TMP). High TMP often associated with high pumping energy hence would increase the amount of energy consumed. In addition, membrane with high TMP would severely affect by membrane compaction. Results showed that membrane compaction leads to up to 66 % clean water permeability loss when increasing the TMP from 2.5 to 19 kPa. The Chlorella vulgaris broth permeabilities decreased from 1660 and 1250 to 296 and 251 L/m2hrbar for corresponding TMPs for system with and without aeration, respectively. However, it was found that membrane fouling was more vulnerable at low TMP due to poor foulant scouring from a low crossflow velocity in which up to 56 % of permeability losses were observed. Membrane fouling is the biggest drawback of membrane system as it would reduce the membrane performance. In this study, aeration was introduced as membrane fouling control to scour-off the foulant from membrane surface and pores. In terms of energy consumption, it was observed that the specific energy consumption for the ULPM were very low of up to 4.4 × 10-3 kWh/m3. Overall, combination of low TMP with aeration offers lowest energy input.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links