Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Al-Gheethi A, Ma NL, Rupani PF, Sultana N, Yaakob MA, Mohamed RMSR, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71780-71793.
    PMID: 34585345 DOI: 10.1007/s11356-021-16629-w
    Slaughterhouse and wet market wastes are pollutants that have been always neglected by society. According to the Food and Agriculture Organization of the United Nations, more than three billion and nineteen million livestock were consumed worldwide in 2018, which reflects the vast amount and the broad spectrum of the biowastes generated. Slaughterhouse biowastes are a significant volume of biohazards that poses a high risk of contamination to the environment, an outbreak of diseases, and insecure food safety. This work comprehensively reviewed existing biowaste disposal practices and revealed the limitations of technological advancements to eradicate the threat of possible harmful infectious agents from these wastes. Policies, including strict supervision and uniform minimum hygienic regulations at all raw food processing factories, should therefore be tightened to ensure the protection of the food supply. The vast quantity of biowastes also offers a zero-waste potential for a circular economy, but the incorporation of biowaste recycling, including composting, anaerobic digestion, and thermal treatment, nevertheless remains challenging.
  2. Chu J, Li S, Chen N, Wen P, Sonne C, Ma NL
    Chemosphere, 2022 Mar;291(Pt 1):132679.
    PMID: 34718007 DOI: 10.1016/j.chemosphere.2021.132679
    Poplar trees rapidly yield wood and are therefore suitable as a biofuel feedstock; however, the quality of poplar is modest, and the profitability of poplar cultivation depends on the efficiency of the harvesting process. This study offers a simple and sustainable technique to harvest lignocellulosic resources from poplar for bioethanol production. The proposed two-step pretreatment method increased the surface lignin content and decreased the surface polysaccharide content. The cellulose content increased to 54.9% and the xylan content decreased to 6.7% at 5% AC. The cellulose yield of poplar residues (Populus L.) reached 65.5% by this two-step acetic acid (AC) and sodium sulphite (SS) treatment method. Two-step pretreatment using 5% AC and 4% SS obtained a recovery of nearly 80% of the total available fermentable sugar. The surface characterization showed a higher porosity in treated samples, which improved their hydrolysability. This method decreased the amount of lignin in plant biomass, making it applicable for further wood resource recovery or waste recycling for biorefinery purposes at very low costs.
  3. Foong SY, Ma NL, Lam SS, Peng W, Low F, Lee BHK, et al.
    J Hazard Mater, 2020 Dec 05;400:123006.
    PMID: 32947729 DOI: 10.1016/j.jhazmat.2020.123006
    Pollution with pesticides is a widespread global problem and biomonitoring of the environment and human populations is necessary to assess potential harmful biological effects. One of the pesticides that are showing up in vegetables and fruit is chlorpyrifos (CPS). CPS is a nerve-poisoning organophosphorus insecticide, which is in up to 1/3 of all conventionally produced citrus fruits. Our review shows that CPS is a hazardous material that poses risks to human health and also pollutes the environment. There is numerous risk assessment of CPS reported, however, the assessment is easily affected by factors such as climate change, exposure period and CPS concentration. Therefore, rigorous update of the hazardous level of CPS is needed to determine the threshold level safe for humans and animals. There is a need for remediation using for example photoreactive nanoparticle methods and microbial degeneration possessing high degradation efficiency (73-97%). In addition, stringent biomonitoring of food, environment and human exposure should occur to avoid exposure to chemicals via citrus fruits and vegetables. This is necessary to assess health risks and socioeconomic impacts which also require collaboration between private and public sectors to facilitate the growth, sale and manufacturing of biopesticides.
  4. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, et al.
    ACS Appl Mater Interfaces, 2020 Jul 08;12(27):30824-30832.
    PMID: 32544314 DOI: 10.1021/acsami.0c07448
    We used an innovative approach involving hot pressing, low energy consumption, and no adhesive to transform bamboo biomass into a natural sustainable fiber-based biocomposite for structural and furniture applications. Analyses showed strong internal bonding through mechanical "nail-like" nano substances, hydrogen, and ester and ether bonds. The biocomposite encompasses a 10-fold increase in internal bonding strength with improved water resistance, fire safety, and environmentally friendly properties as compared to existing furniture materials using hazardous formaldehyde-based adhesives. As compared to natural bamboo material, this new biocomposite has improved fire and water resistance, while there is no need for toxic adhesives (mostly made from formaldehyde-based resin), which eases the concern of harmful formaldehyde-based VOC emission and ensures better indoor air quality. This surpasses existing structural and furniture materials made by synthetic adhesives. Interestingly, our approach can 100% convert discarded bamboo biomass into this biocomposite, which represents a potentially cost reduction alternative with high revenue. The underlying fragment riveting and cell collapse binding are obviously a new technology approach that offers an economically and sustainable high-performance biocomposite that provides solutions to structural and furniture materials bound with synthetic adhesives.
  5. Goh MS, Lam SD, Yang Y, Naqiuddin M, Addis SNK, Yong WTL, et al.
    J Hazard Mater, 2021 10 15;420:126624.
    PMID: 34329083 DOI: 10.1016/j.jhazmat.2021.126624
    In agriculture, the convenience and efficacy of chemical pesticides have become inevitable to manage cultivated crop production. Here, we review the worldwide use of pesticides based on their categories, mode of actions and toxicity. Excessive use of pesticides may lead to hazardous pesticide residues in crops, causing adverse effects on human health and the environment. A wide range of high-tech-analytical methods are available to analyse pesticide residues. However, they are mostly time-consuming and inconvenient for on-site detection, calling for the development of biosensors that detect cellular changes in crops. Such new detection methods that combine biological and physicochemical knowledge may overcome the shortage in current farming to develop sustainable systems that support environmental and human health. This review also comprehensively compiles domestic pesticide residues removal tips from vegetables and fruits. Synthetic pesticide alternatives such as biopesticide and nanopesticide are greener to the environment. However, its safety assessment for large-scale application needs careful evaluation. Lastly, we strongly call for reversions of pesticide application trends based on the changing climate, which is lacking in the current scenario.
  6. Gou Z, Ma NL, Zhang W, Lei Z, Su Y, Sun C, et al.
    Environ Res, 2020 09;188:109829.
    PMID: 32798948 DOI: 10.1016/j.envres.2020.109829
    Intensive studies have been performed on the improvement of bioethanol production by transformation of lignocellulose biomass. In this study, the digestibility of corn stover was dramatically improved by using laccase immobilized on Cu2+ modified recyclable magnetite nanoparticles, Fe3O4-NH2. After digestion, the laccase was efficiently separated from slurry. The degradation rate of lignin reached 40.76%, and the subsequent cellulose conversion rate 38.37% for 72 h at 35 °C with cellulase at 50 U g-1 of corn stover. Compared to those of free and inactivated mode, the immobilized laccase pre-treatment increased subsequent cellulose conversion rates by 23.98% and 23.34%, respectively. Moreover, the reusability of immobilized laccase activity remained 50% after 6 cycles. The storage and thermal stability of the fixed laccase enhanced by 70% and 24.1% compared to those of free laccase at 65 °C, pH 4.5, respectively. At pH 10.5, it exhibited 16.3% more activities than its free mode at 35 °C. Our study provides a new avenue for improving the production of bioethanol with immobilized laccase for delignification using corn stover as the starting material.
  7. Gou Z, Zheng H, He Z, Su Y, Chen S, Chen H, et al.
    Environ Pollut, 2023 Jan 15;317:120790.
    PMID: 36460190 DOI: 10.1016/j.envpol.2022.120790
    This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.
  8. Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, et al.
    Environ Pollut, 2024 Jan 01;340(Pt 1):122830.
    PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830
    The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
  9. Karirat T, Saengha W, Deeseenthum S, Ma NL, Sutthi N, Wangkahart E, et al.
    Data Brief, 2023 Oct;50:109474.
    PMID: 37600590 DOI: 10.1016/j.dib.2023.109474
    This data evaluated the capacity of Bacillus spp. isolated from Thai milk kefir to produce exopolysaccharide (EPS) on cassava pulp and tested its antioxidant and antibacterial properties. Thailand's starch industry generates million tons of cassava pulp, which is underutilized or bio-transformed into higher-value bioproducts. Antioxidant and antibacterial bacterial exopolysaccharides are beneficial in the food, feed, pharmaceutical, and cosmetic industries. Moisture, ash, fat, protein, fiber, starch, sugar, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) were analyzed from cassava pulp as an EPS substrate. After 3 days of bacterial fermentation, EPS generation, culture pH, reducing sugar amount, and bacterial count were recorded. Antioxidant activities and bioactive content including hydroxyl radical scavenging activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), total phenolic and flavonoid content (TPC and TFC), and antimicrobial activity against two Nile tilapia pathogens (Streptococcus agalactiae and Staphylococcus aureus) from different Bacillus species were evaluated. Proximate analysis, dinitrosalicylic acid assay, pH value record, bacterial count using spread plate method, antioxidant activity and bioactive content assays via spectrophotometry, and agar disk diffusion were the main approaches. This study used microbial cell factories to convert agro-biowaste, such as cassava pulp, into EPS bioproducts which accords with a bio-circular green economy model.
  10. Khairul WM, Hashim F, Mohammed M, Shah NSMN, Johari SATT, Rahamathullah R, et al.
    Anticancer Agents Med Chem, 2021;21(13):1738-1750.
    PMID: 33176667 DOI: 10.2174/1871520620999201110190709
    INTRODUCTION: In this contribution, a series of alkoxy substituted chalcones were successfully designed, synthesized, spectroscopically characterized and evaluated for their cytotoxicity potential in inhibiting the growth of MCF-7 cells.

    OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.

    METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.

    RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.

    CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.

  11. Khoo SC, Peng WX, Yang Y, Ge SB, Soon CF, Ma NL, et al.
    J Hazard Mater, 2020 12 05;400:123296.
    PMID: 32947701 DOI: 10.1016/j.jhazmat.2020.123296
    Synthetic adhesives in the plywood industry are usually volatile compounds such as formaldehyde-based chemical which are costly and hazardous to health and the environment. This phenomenon promotes an interest in developing bio-boards without synthetic adhesives. This study proposed a novel application of natural mycelium produced during mushroom cultivation as natural bio-adhesive material that convert spent mushroom substrate (SMS) into high-performance bio-board material. Different types of spent mushroom substrates were compressed with specific designed mould with optimal temperature at 160 °C and 10 mPa for 20 min. The bio-board made from Ganoderma lucidum SMS had the highest internal bonding strength up to 2.51 mPa. This is far above the 0.4-0.8 range of China and US national standards. In addition, the material had high water and fire resistance, high bonding and densified structures despite free of any adhesive chemicals. These properties and the low cost one step procedure show the potential as a zero-waste economy chain for sustainable agricultural practice for waste and remediation.
  12. Khoo SC, Ma NL, Peng WX, Ng KK, Goh MS, Chen HL, et al.
    Chemosphere, 2022 Jan;286(Pt 1):131477.
    PMID: 34303046 DOI: 10.1016/j.chemosphere.2021.131477
    Global solid waste is expected to increase by at least 70% annually until year 2050. The mixture of solid waste including food waste from food industry and domestic diaper waste in landfills is causing environmental and human health issues. Nevertheless, food and diaper waste containing high lignocellulose can easily degrade using lignocellulolytic enzymes thereby converted into energy for the development and growth of mushroom. Therefore, this study explores the potential of recycling biomass waste from coffee ground, banana, eggshell, tea waste, sugarcane bagasse and sawdust and diaper waste as raw material for Lingzhi mushroom (Ganoderma lucidum) cultivation. Using 2% of diaper core with sawdust biowaste leading to the fastest 100% mushroom mycelium spreading completed in one month. The highest production yield is 71.45 g mushroom; this represents about 36% production biological efficiency compared to only 21% as in commercial substrate. The high mushroom substrate reduction of 73% reflect the valorisation of landfill waste. The metabolomics profiling showed that the Lingzhi mushroom produced is of high quality with a high content of triterpene being the bioactive compounds that are medically important for treating assorted disease and used as health supplement. In conclusion, our study proposed a potential resource management towards zero-waste and circular bioeconomy for high profitable mushroom cultivation.
  13. Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, et al.
    Environ Res, 2022 Dec;215(Pt 1):114218.
    PMID: 36049514 DOI: 10.1016/j.envres.2022.114218
    The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
  14. Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL
    Environ Res, 2024 Feb 11;250:118441.
    PMID: 38350544 DOI: 10.1016/j.envres.2024.118441
    This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
  15. Kong Y, Ma NL, Yang X, Lai Y, Feng Z, Shao X, et al.
    Environ Pollut, 2020 Oct;265(Pt A):114951.
    PMID: 32554093 DOI: 10.1016/j.envpol.2020.114951
    Greenhouse gases (GHGs) carbon dioxide (CO2) and nitrous oxide (N2O), contribute significantly to global warming, and they have increased substantially over the years. Reforestation is considered as an important forestry application for carbon sequestration and GHGs emission reduction, however, it remains unknown whether reforestation may instead produce too much CO2 and N2O contibuting to GHGs pollution. This study was performed to characterize and examine the CO2 and N2O emissions and their controlling factors in different species and types of pure and mixture forest used for reforestation. Five soil layers from pure forest Platycladus orientalis (PO), Robinia pseudoacacia (RP), and their mixed forest P-R in the Taihang mountains of central China were sampled and incubated aerobically for 11 days. The P-R soil showed lower CO2 and N2O production potentials than those of the PO soils (P 
  16. Lam SS, Chew KW, Show PL, Ma NL, Ok YS, Peng W, et al.
    Environ Res, 2020 11;190:109966.
    PMID: 32829186 DOI: 10.1016/j.envres.2020.109966
    Two of the world most endangered marine and terrestrial species are at the brink of extinction. The vaquita (Phocoena sinus) is the smallest existing cetacean and the population has declined to barely 22 individuals now remaining in Mexico's Gulf of California. With the ongoing decline, it is likely to go extinct within few years. The primary threat to this species has been mortality as a result of by-catch from gillnet fishing as well as environmental toxic chemicals and disturbance. This has called for the need to establish a National Park within the Gulf of California to expand essential habitat and provide the critical ecosystem protection for vaquita to thrive and multiply, given that proper conservation enforcement and management of the park are accomplished. In the terrestrial environment, the cheetah (Acinonyx jubatus) is reduced to a low number worldwide with the Iran subpopulation currently listed as Critically Endangered and the Indian subpopulation already extinct. There is a need for conservation efforts due to habitat loss, but also an indication of the conspicuous threat of illegal trade and trafficking from Africa and Arab countries in the Middle East. Funds have also been set up to provide refuges for the cheetah by working directly with farmers and landowners, which is a critical movement in adaptive management. These are the potential options for the preservation and possibly the expansion of the overall vaquita and cheetah populations.
  17. Lam SS, Wan Mahari WA, Ma NL, Azwar E, Kwon EE, Peng W, et al.
    Chemosphere, 2019 Sep;230:294-302.
    PMID: 31108440 DOI: 10.1016/j.chemosphere.2019.05.054
    Used baby diaper consists of a combination of decomposable cellulose, non-biodegradable plastic materials (e.g. polyolefins) and super-absorbent polymer materials, thus making it difficult to be sorted and separated for recycling. Microwave pyrolysis was examined for its potential as an approach to transform used baby diapers into value-added products. Influence of the key operating parameters comprising process temperature and microwave power were investigated. The pyrolysis showed a rapid heating process (up to 43 °C/min of heating rate) and quick reaction time (20-40 min) in valorizing the used diapers to generate pyrolysis products comprising up to 43 wt% production of liquid oil, 29 wt% gases and 28 wt% char product. Microwave power and operating temperature were observed to have impacts on the heating rate, process time, production and characteristics of the liquid oil and solid char. The liquid oil contained alkanes, alkenes and esters that can potentially be used as chemical additives, cosmetic products and fuel. The solid char contained high carbon, low nitrogen and free of sulphur, thus showing potential for use as adsorbents and soil additives. These observations demonstrate that microwave pyrolysis has great prospect in transforming used baby diaper into liquid oil and char products that can be utilised in several applications.
  18. Lam SS, Ma NL, Peng W, Sonne C
    Science, 2020 May 29;368(6494):958.
    PMID: 32467384 DOI: 10.1126/science.abc2202
  19. Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, et al.
    J Environ Manage, 2018 May 01;213:400-408.
    PMID: 29505995 DOI: 10.1016/j.jenvman.2018.02.092
    Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.
  20. Li Y, Shaheen SM, Rinklebe J, Ma NL, Yang Y, Ashraf MA, et al.
    J Hazard Mater, 2021 08 15;416:126012.
    PMID: 34492887 DOI: 10.1016/j.jhazmat.2021.126012
    The rapid thermal cracking technology of biomass can convert biomass into bio-oil and is beneficial for industrial applications. Agricultural and forestry wastes are important parts of China's energy, and their high-grade utilization is useful to solve the problem of energy shortages and environmental pollution. To the best of our knowledge, the impact of nanocatalysts on converting biowastes for bio-oil has not been studied. Consequently, we examined the production of bio-oil by pyrolysis of Aesculus chinensis Bunge Seed (ACBS) using nanocatalysts (Fe2O3 and NiO catalysts) for the first time. The pyrolysis products of ACBS include 1-hydroxy-2-propanone (3.97%), acetic acid (5.42%), and furfural (0.66%). These chemical components can be recovered for use as chemical feedstock in the form of bio-oil, thus indicating the potential of ACBS as a feedstock to be converted by pyrolysis to produce value-added bio-oil. The Fe2O3 and NiO catalysts enhanced the pyrolysis process, which accelerated the precipitation of gaseous products. The pyrolysis rates of the samples gradually increased at DTGmax, effectively promoting the catalytic cracking of ACBS, which is beneficial to the development and utilization of ACBS to produce high valorization products. Combining ACBS and nanocatalysts can change the development direction of high valorization agricultural and forestry wastes in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links