Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Ali Khan MS, Ahmed N, Misbah, Arifuddin M, Zakaria ZA, Al-Sanea MM, et al.
    Food Chem Toxicol, 2018 May;115:523-531.
    PMID: 29555329 DOI: 10.1016/j.fct.2018.03.021
    In view of the report on anti-nociceptive activity of Leathery Murdah, Terminalia coriacea {Roxb.} Wight & Arn. (Combretaceae) leaves, the present study was conducted to isolate the active constituents and identify the underlying mechanisms. The methanolic extract of T. coriacea leaves (TCLME) at doses 125, 250 and 500 mg/kg orally, was subjected to various in-vivo assays in acetic acid induced writhing and formalin induced paw-licking tests with aspirin (100 mg/kg) and morphine (5 mg/kg) as reference drugs. Three flavonoids, rutin, robinin and gossypetin 3-glucuronide 8-glucoside were isolated and characterized from TCLME for the first time. The extract showed significant (p 
  2. Ali Khan MS, Misbah, Ahmed N, Arifuddin M, Rehman A, Ling MP
    Food Chem Toxicol, 2018 Jun 05.
    PMID: 29883785 DOI: 10.1016/j.fct.2018.06.007
    Flowers of Tabernaemontana divaricata (L.) R. Br., (Apocynaceae) are used in traditional medicine for analgesic property. The present study was performed to isolate the active principles and investigate the mechanisms involved in the anti-nociception caused by T. divaricata flower methanolic extract (TDFME). The extract in the doses of 125, 250 and 500 mg/kg, p.o was subjected to various assays in acetic acid induced abdominal writhing and formalin induced paw licking test models. Naloxone, L-Arginine, Glibenclamide and Glutamate were used as inducers while Morphine, L-NAME, Methylene blue and Aspirin served as standard drugs. The phytochemical analysis led to the isolation of three indole alkaloids namely Voacangine, Catharanthine and O-acetyl Vallesamine. The anti-nociception produced by TDFME was attenuated significantly (p< 0.001) by the intra-peritoneal pretreatment of naloxone, L-Arginine and glibenclamide. The nociception produced by glutamate was inhibited by TDFME. TDFME also enhanced the antinociceptive activity of L-NAME when given in combination. However TDFME co-administration did not produce significant results with methylene blue indicating lack of cGMP involvement. These results indicate that TDFME produces anti-nociception action mediated by opioid, nitric oxide, K+-ATP and glutamate mechanisms and the effect is largely related to the indole alkaloids.
  3. Ibrahim IR, Matori KA, Ismail I, Awang Z, Rusly SNA, Nazlan R, et al.
    Sci Rep, 2020 Feb 21;10(1):3135.
    PMID: 32081972 DOI: 10.1038/s41598-020-60107-1
    Microwave absorption properties were systematically studied for double-layer carbon black/epoxy resin (CB) and Ni0.6Zn0.4Fe2O4/epoxy resin (F) nanocomposites in the frequency range of 8 to 18 GHz. The Ni0.6Zn0.4Fe2O4 nanoparticles were synthesized via high energy ball milling with subsequent sintering while carbon black was commercially purchased. The materials were later incorporated into epoxy resin to fabricate double-layer composite structures with total thicknesses of 2 and 3 mm. The CB1/F1, in which carbon black as matching and ferrite as absorbing layer with each thickness of 1 mm, showed the highest microwave absorption of more than 99.9%, with minimum reflection loss of -33.8 dB but with an absorption bandwidth of only 2.7 GHz. Double layer absorbers with F1/CB1(ferrite as matching and carbon black as absorbing layer with each thickness of 1 mm) structure showed the best microwave absorption performance in which more than 99% microwave energy were absorbed, with promising minimum reflection loss of -24.0 dB, along with a wider bandwidth of 4.8 GHz and yet with a reduced thickness of only 2 mm.
  4. Hospet R, Thangadurai D, Cruz-Martins N, Sangeetha J, Anu Appaiah KA, Chowdhury ZZ, et al.
    Crit Rev Food Sci Nutr, 2023;63(17):2960-2969.
    PMID: 34592865 DOI: 10.1080/10408398.2021.1983763
    Strains' improvement technology plays an essential role in enhancing the quality of industrial strains. Several traditional methods and modern techniques have been used to further improve strain engineering programs. The advances stated in strain engineering and the increasing demand for microbial metabolites leads to the invention of the genome shuffling technique, which ensures a specific phenotype improvement through inducing mutation and recursive protoplast fusion. In such technique, the selection of multi-parental strains with distinct phenotypic traits is crucial. In addition, as this evolutionary strain improvement technique involves combinative approaches, it does not require any gene sequence data for genome alteration and, therefore, strains developed by this elite technique will not be considered as genetically modified organisms. In this review, the different stages involved in the genome shuffling technique and its wide applications in various phenotype improvements will be addressed. Taken together, data discussed here highlight that the use of genome shuffling for strain improvement will be a plus for solving complex phenotypic traits and in promoting the rapid development of other industrially important strains.
  5. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al.
    ACS Omega, 2021 Mar 30;6(12):8210-8225.
    PMID: 33817480 DOI: 10.1021/acsomega.0c06242
    The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
  6. Huang P, Huang S, Ma Y, Danish S, Hareem M, Syed A, et al.
    BMC Plant Biol, 2024 Jan 23;24(1):63.
    PMID: 38262953 DOI: 10.1186/s12870-024-04753-x
    Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.
  7. Rosdi N, Azis RS, Ismail I, Mokhtar N, Muhammad Zulkimi MM, Mustaffa MS
    Sci Rep, 2021 Aug 05;11(1):15982.
    PMID: 34354140 DOI: 10.1038/s41598-021-95332-9
    Microwave absorption properties were systematically studied for synthesised barium hexaferrite (BaFe12O19) nanoparticles and spiraled multiwalled carbon nanotubes (MWCNTs) hybrid. BaFe12O19 nanoparticles were synthesised by a high energy ball milling (HEBM) followed by sintering at 1400 °C and structural, electromagnetic and microwave characteristics have been scrutinized thoroughly. The sintered powders were then used as a catalyst to synthesise spiraled MWCNTs/BaFe12O19 hybrid via the chemical vapour deposition (CVD) process. The materials were then incorporated into epoxy resin to fabricate single-layer composite structures with a thickness of 2 mm. The composite of BaFe12O19 nanoparticles showed a minimum reflection loss is - 3.58 dB and no has an absorption bandwidth while the spiraled MWCNTs/BaFe12O19 hybrid showed the highest microwave absorption of more than 99.9%, with a minimum reflection loss of - 43.99 dB and an absorption bandwidth of 2.56 GHz. This indicates that spiraled MWCNTs/BaFe12O19 hybrid is a potential microwave absorber for microwave applications in X and Ku bands.
  8. Nadeem M, Ahmad M, Akhtar MS, Shaari A, Riaz S, Naseem S, et al.
    PLoS One, 2016;11(6):e0158084.
    PMID: 27348436 DOI: 10.1371/journal.pone.0158084
    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery.
  9. Liaqat M, Gani A, Anisi MH, Ab Hamid SH, Akhunzada A, Khan MK, et al.
    PLoS One, 2016 Sep 22;11(9):e0161340.
    PMID: 27658194 DOI: 10.1371/journal.pone.0161340
    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results.
  10. Abbasi MA, Irshad M, Aziz-Ur-Rehman -, Siddiqui SZ, Nazir M, Ali Shah SA, et al.
    Pak J Pharm Sci, 2020 Sep;33(5):2161-2170.
    PMID: 33824125
    In the presented work, 2,3-dihydro-1,4-benzodioxin-6-amine (1) was reacted with 4-chlorobenzenesulfonyl chloride (2) in presence of aqueous basic aqueous medium to obtain 4-chloro-N-(2,3-dihydro-1,4-benzodioxin-6-yl)benzenesulfonamide (3). In parallel, various un/substituted anilines (4a-l) were treated with bromoacetyl bromide (5) in basified aqueous medium to obtain corresponding 2-bromo-N-(un/substituted)phenylacetamides (6a-l) as electrophiles. Then the compound 3 was finally reacted with these electrophiles, 6a-l, in dimethylformamide (DMF) as solvent and lithium hydride as base and activator to synthesize a variety of 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(un/substituted)phenylacetamides (7a-l). The synthesized compounds were corroborated by IR, 1H-NMR and EI-MS spectral data for structural confirmations. These molecules were then evaluated for their antimicrobial and antifungal activities along with their %age hemolytic activity. Some compounds were found to have suitable antibacterial and antifungal potential, especially the compound 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(3,5-dimethylphenyl)acetamide (7l) exhibited good antimicrobial potential with low value of % hemolytic activity.
  11. Ma NL, Peng W, Soon CF, Noor Hassim MF, Misbah S, Rahmat Z, et al.
    Environ Res, 2021 Feb;193:110405.
    PMID: 33130165 DOI: 10.1016/j.envres.2020.110405
    The recently emerged coronavirus disease (COVID-19), which has been characterised as a pandemic by the World Health Organization (WHO), is impacting all parts of human society including agriculture, manufacturing, and tertiary sectors involving all service provision industries. This paper aims to give an overview of potential host reservoirs that could cause pandemic outbreak caused by zoonotic transmission. Amongst all, continues surveillance in slaughterhouse for possible pathogens transmission is needed to prevent next pandemic outbreak. This paper also summarizes the potential threats of pandemic to agriculture and aquaculture sector that control almost the total food supply chain and market. The history lesson from the past, emerging and reemerging infectious disease including the Severe Acute Respiratory Syndrome (SARS) in 2002, Influenza A H1N1 (swine flu) in 2009, Middle East Respiratory Syndrome (MERS) in 2012 and the recent COVID-19 should give us some clue to improve especially the governance to be more ready for next coming pandemic.
  12. Yap YJ, Wong PF, AbuBakar S, Sam SS, Shunmugarajoo A, Soh YH, et al.
    Clin Chim Acta, 2023 Feb 15;541:117243.
    PMID: 36740088 DOI: 10.1016/j.cca.2023.117243
    Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.
  13. Aminudin N, Abdullah NA, Misbah H, Karsani SA, Husain R, Hoe SZ, et al.
    Proteome Sci, 2012;10(1):17.
    PMID: 22416803 DOI: 10.1186/1477-5956-10-17
    Proteins that are associated with hypertension may be identified by comparing the 2-dimensional gel electrophoresis (2-DE) profiles of the sera of spontaneously hypertensive rats (SHR) with those generated from normotensive Spraque-Dawley rats (SDR).
  14. Misbah S, Low VL, Mohd Rahim NF, Jaba R, Basari N, Ya'cob Z, et al.
    J Med Entomol, 2022 Feb 18.
    PMID: 35178576 DOI: 10.1093/jme/tjac014
    Aedes albopictus is one of the main mosquito vectors responsible for transmitting arboviruses to humans and animals. The ability of this mosquito to support virus transmission has been linked to vector competence, which is partly attributed to the genetic disparities in Ae. albopictus population. At present, little is known about the biologically important traits of Ae. albopictus in Malaysia. Thus, the study aims to determine the genetic variation of Ae. albopictus based on the mitochondria-encoded sequences of cytochrome oxidase subunit I (COI). A statistical parsimony network of 253 taxa aligned as 321 characters of the COI gene revealed 42 haplotypes (H1-H42), of which H1 was the most widespread haplotype in Peninsular Malaysia. Three highly divergent haplotypes (H21, H30, and H31) were detected from the northern population. Overall, haplotype and nucleotide diversities were 0.576 and 0.003, respectively, with low genetic differentiation (FST = 0.039) and high gene flow (Nm = 12.21) across all populations.
  15. AbuBakar S, Sam IC, Yusof J, Lim MK, Misbah S, MatRahim N, et al.
    Emerg Infect Dis, 2009 Jan;15(1):79-82.
    PMID: 19116058 DOI: 10.3201/eid1501.080264
    Enterovirus 71 (EV71) outbreaks occur periodically in the Asia-Pacific region. In 2006, Brunei reported its first major outbreak of EV71 infections, associated with fatalities from neurologic complications. Isolated EV71 strains formed a distinct lineage with low diversity within subgenogroup B5, suggesting recent introduction and rapid spread within Brunei.
  16. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
  17. Zeeshan F, Tabbassum M, Jorgensen L, Medlicott NJ
    Appl Spectrosc, 2018 Feb;72(2):268-279.
    PMID: 29022355 DOI: 10.1177/0003702817739908
    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.
  18. Zeeshan F, Tabbassum M, Jorgensen L, Medlicott NJ
    AAPS PharmSciTech, 2018 Feb;19(2):769-782.
    PMID: 29134579 DOI: 10.1208/s12249-017-0883-1
    Protein biologics are prone to conformational changes during formulation development. Limited methods are available for conformational analysis of proteins in solid state and in the presences of formulation excipients. The aim of this study was to investigate the secondary structures of proteins encased in solid lipid matrices as a novel indicator of their stability upon in vitro release. Model proteins namely catalase and lysozyme were incorporated into lipid namely Precirol® AT05 (glycerol palmitostearate, melting point 58°C) at 30% w/w loading using melting and mixing and wet granulation methods. Attenuated total reflectance (ATR-FTIR) spectroscopy, size-exclusion chromatography (SEC) and biological activity analyses were performed. The information about secondary structure was acquired using second derivative analysis of amide-I band (1600-1700 cm-1). ATR analysis demonstrated interference of lipid spectrum with protein amide-I band which was subsequently subtracted to allow the analysis of the secondary structure. ATR spectra amide-I bands showed shifts peak band positions compared to native protein for matrices prepared using wet granulation. SEC analysis gave evidence of protein aggregation for catalase which was increased using wet granulation. The biological activity of catalase was statistically different from that of control and was affected by the incorporation method and was found to be in alignment with ATR spectral changes and extent of aggregation. In conclusion, ATR spectroscopy could analyze protein secondary structure in lipid matrices provided lipid interference was minimized. The ATR spectral changes and formation of aggregates can indicate the loss in biological activity of protein released from solid lipid matrices.
  19. Syed N, Hamid ABA, Su X, Bhatti MH
    Front Psychol, 2022;13:941235.
    PMID: 36524188 DOI: 10.3389/fpsyg.2022.941235
    Research on employee harassment, in the form of workplace bullying, has increased over the past decade. However, there is little research on the prevalence and impact of cyberbullying, a type of cyber-related violence in the workplace. Thus, it would be interesting to examine the impact of cyberbullying on interpersonal deviance through the serial mediating effect of emotional exhaustion and anger. Drawing from the conservation of the resource theory and the affective event theory, this proposed study clarifies the mediating effects of emotional exhaustion and anger. The time lag approach was used to collect the data from the sample of 385 employees in the telecommunication sector of Pakistan. By employing SPSS and PLS, bootstrapping was performed to conduct the mediation analysis. Findings indicated that workplace cyberbullying increased interpersonal deviance by enhancing emotional exhaustion and anger. The current research contributes to the literature by considering the behavioral outcomes of workplace cyberbullying with the practical implications for human resource practitioners.
  20. Misbah S, Hassan H, Yusof MY, Hanifah YA, AbuBakar S
    Singapore Med J, 2005 Sep;46(9):461-4.
    PMID: 16123830
    This study aims to identify Acinetobacter of clinical isolates from the University of Malaya Medical Centre (UMMC), Kuala Lumpur, to the species level by 16S rDNA sequencing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links