Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Yeap SK, Abu N, Mohamad NE, Beh BK, Ho WY, Ebrahimi S, et al.
    PMID: 26335427 DOI: 10.1186/s12906-015-0832-z
    The progression of breast cancer is increasing at an alarming rate, particularly in western countries. Meanwhile, the lower incidence in Asian countries could be attributed to the heavy incorporation of green leaves vegetables or spices in their diets. Murraya koenigii (MK) or often times known as curry leaves are common spice used mostly in tropical countries. Anti-inflammatory and chemopreventive effects of MK aqueous extract on 4T1 breast cancer cell-challenged mice were evaluated.
  2. Yeap SK, Beh BK, Ho WY, Mohd Yusof H, Mohamad NE, Ali NM, et al.
    PMID: 26074993 DOI: 10.1155/2015/508029
    Legumes have previously been reported with hypolipidemic effect caused by the presence of flavonoid. This study was carried out to evaluate the antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice. Blood from all mice was collected and subjected to serum lipid and liver profiles biochemical analysis and quantitative RT-PCR for atherosclerosis related gene expressions. Besides, livers were collected for antioxidant assays and histopathology evaluation. Fermented mung bean was found to reduce the level of serum lipid and liver enzyme profiles of hypercholesterolemic mice. Furthermore, liver antioxidant and nitric oxide levels were also significantly restored by fermented mung bean in a dosage dependent manner. The gene expression study indicated that Apoe and Bcl2a1a were upregulated while Npy and Vwf expressions were downregulated after the treatment. The effects of fermented mung bean were greater than nonfermented mung bean. These results indicated that fermented mung bean possessed antioxidants that lead to its hypolipidemic effect on hypercholesterolemic mice.
  3. Yeap SK, Beh BK, Kong J, Ho WY, Mohd Yusof H, Mohamad NE, et al.
    PMID: 25031606 DOI: 10.1155/2014/707829
    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA.
  4. Yeap SK, Mohd Yusof H, Mohamad NE, Beh BK, Ho WY, Ali NM, et al.
    PMID: 23710232 DOI: 10.1155/2013/708464
    Mung bean has been reported to have antioxidant, cytotoxic, and immunomodulatory effects in vitro. Fermented products are reported to have enhanced immunomodulation and cancer chemopreventive effects. In this study, fermented mung bean treatments in vivo were studied by monitoring tumor development, spleen immunity, serum cytokine (interleukin 2 and interferon gamma) levels, and spleen/tumor antioxidant levels after injection with low and high risk 4T1 breast cancer cells. Pretreatment with fermented mung bean was associated with delayed tumor formation in low risk mice. Furthermore, this treatment was connected with higher serum anticancer cytokine levels, spleen T cell populations, splenocyte cytotoxicity, and spleen/tumor antioxidant levels. Histopathological evaluation of fermented mung bean treated tumor revealed lower event of mitotic division. On the other hand, antioxidant and nitric oxide levels that were significantly increased in the untreated mice were inhibited in the fermented mung bean treated groups. These results suggested that fermented mung bean has potential cancer chemoprevention effects through the stimulation of immunity, lipid peroxidation, and anti-inflammation.
  5. Talib N, Mohamad NE, Yeap SK, Hussin Y, Aziz MNM, Masarudin MJ, et al.
    Molecules, 2019 Jul 17;24(14).
    PMID: 31319614 DOI: 10.3390/molecules24142606
    Kefir is a homemade, natural fermented product comprised of a probiotic bacteria and yeast complex. Kefir consumption has been associated with many advantageous properties to general health, including as an antioxidative, anti-obesity, anti-inflammatory, anti-microbial, and anti-tumor moiety. This beverage is commonly found and consumed by people in the United States of America, China, France, Brazil, and Japan. Recently, the consumption of kefir has been popularized in other countries including Malaysia. The microflora in kefir from different countries differs due to variations in culture conditions and the starter media. Thus, this study was aimed at isolating and characterizing the lactic acid bacteria that are predominant in Malaysian kefir grains via macroscopic examination and 16S ribosomal RNA gene sequencing. The results revealed that the Malaysian kefir grains are dominated by three different strains of Lactobacillus strains, which are Lactobacillus harbinensis, Lactobacillusparacasei, and Lactobacillus plantarum. The probiotic properties of these strains, such as acid and bile salt tolerances, adherence ability to the intestinal mucosa, antibiotic resistance, and hemolytic test, were subsequently conducted and extensively studied. The isolated Lactobacillus spp. from kefir H maintained its survival rate within 3 h of incubation at pH 3 and pH 4 at 98.0 ± 3.3% and 96.1 ± 1.7% of bacteria growth and exhibited the highest survival at bile salt condition at 0.3% and 0.5%. The same isolate also showed high adherence ability to intestinal cells at 96.3 ± 0.01%, has antibiotic resistance towards ampicillin, penicillin, and tetracycline, and showed no hemolytic activity. In addition, the results of antioxidant activity tests demonstrated that isolated Lactobacillus spp. from kefir G possessed high antioxidant activities for total phenolic content (TPC), total flavonoid content (TFC), ferric reducing ability of plasma (FRAP), and 1,1-diphenyl-2-picryl-hydrazine (DPPH) assay compared to other isolates. From these data, all Lactobacillus spp. isolated from Malaysian kefir serve as promising candidates for probiotics foods and beverage since they exhibit potential probiotic properties and antioxidant activities.
  6. Talib N, Mohamad NE, Yeap SK, Ho CL, Masarudin MJ, Abd-Aziz S, et al.
    PMID: 37755545 DOI: 10.1007/s12602-023-10159-2
    The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.
  7. Romli F, Abu N, Khorshid FA, Syed Najmuddin SUF, Keong YS, Mohamad NE, et al.
    Integr Cancer Ther, 2017 12;16(4):540-555.
    PMID: 27338742 DOI: 10.1177/1534735416656051
    Although it may sound unpleasant, camel urine has been consumed extensively for years in the Middle East as it is believed to be able to treat a wide range of diseases such as fever, cold, or even cancer. People usually take it by mixing small drops with camel milk or take it directly. The project aims to study the effects of camel urine in inhibiting the growth potential and metastatic ability of 4T1 cancer cell line in vitro and in vivo. Based on the MTT result, the cytotoxicity of camel urine against 4T1 cell was established, and it was dose-dependent. Additionally, the antimetastatic potential of camel urine was tested by running several assays such as scratch assay, migration and invasion assay, and mouse aortic ring assay with promising results in the ability of camel urine to inhibit metastatic process of the 4T1 cells. In order to fully establish camel urine's potential, an in vivo study was carried out by treating mice inoculated with 4T1 cells with 2 different doses of camel urine. By the end of the treatment period, the tumor in both treated groups had reduced in size as compared to the control group. Additional assays such as the TUNEL assay, immunophenotyping, cytokine level detection assay, clonogenic assay, and proteome profiler demonstrated the capability of camel urine to reduce and inhibit the metastatic potential of 4T1 cells in vivo. To sum up, further study of anticancer properties of camel urine is justified, as evidenced through the in vitro and in vivo studies carried out. Better results were obtained at higher concentration of camel urine used in vivo. Apart from that, this project has laid out the mechanisms employed by the substance to inhibit the growth and the metastatic process of the 4T1 cell.
  8. Rahim NFC, Hussin Y, Aziz MNM, Mohamad NE, Yeap SK, Masarudin MJ, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652694 DOI: 10.3390/molecules26051261
    Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.
  9. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526880 DOI: 10.3390/molecules25112670
    Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
  10. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, et al.
    Sci Rep, 2019 02 07;9(1):1614.
    PMID: 30733560 DOI: 10.1038/s41598-018-38214-x
    Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
  11. Nordin N, Yeap SK, Zamberi NR, Abu N, Mohamad NE, Rahman HS, et al.
    PeerJ, 2018;6:e3916.
    PMID: 29312812 DOI: 10.7717/peerj.3916
    The nanoparticle as a cancer drug delivery vehicle is rapidly under investigation due to its promising applicability as a novel drug delivery system for anticancer agents. This study describes the development, characterization and toxicity studies of a nanostructured lipid carrier (NLC) system for citral. Citral was loaded into the NLC using high pressure homogenization methods. The characterizations of NLC-citral were then determined through various methods. Based on Transmission Electron Microscope (TEM) analysis, NLC-Citral showed a spherical shape with an average diameter size of 54.12 ± 0.30 nm and a polydipersity index of 0.224 ± 0.005. The zeta potential of NLC-Citral was -12.73 ± 0.34 mV with an entrapment efficiency of 98.9 ± 0.124%, and drug loading of 9.84 ± 0.041%. Safety profile of the formulation was examined via in vitro and in vivo routes to study its effects toward normal cells. NLC-Citral exhibited no toxic effects towards the proliferation of mice splenocytes. Moreover, no mortality and toxic signs were observed in the treated groups after 28 days of treatment. There were also no significant alterations in serum biochemical analysis for all treatments. Increase in immunomodulatory effects of treated NLC-Citral and Citral groups was verified from the increase in CD4/CD3 and CD8/CD3 T cell population in both NLC-citral and citral treated splenocytes. This study suggests that NLC is a promising drug delivery system for citral as it has the potential in sustaining drug release without inducing any toxicity.
  12. Mohamad NE, Yeap SK, Lim KL, Yusof HM, Beh BK, Tan SW, et al.
    Chin Med, 2015;10:3.
    PMID: 25699088 DOI: 10.1186/s13020-015-0030-4
    Pineapple (Ananas comosus) was demonstrated to be hepatoprotective. This study aims to investigate the reversing effects of pineapple vinegar on paracetamol-induced liver damage in murine model.
  13. Mohamad NE, Abu N, Yeap SK, Lim KL, Romli MF, Sharifuddin SA, et al.
    Nutr Metab (Lond), 2019;16:49.
    PMID: 31372176 DOI: 10.1186/s12986-019-0380-5
    Background: Plant-based food medicine and functional foods have been consumed extensively due to their bioactive substances and health-beneficial effects. Vinegar is one of them due to its bioactivities, which confers benefits on human body. Our previous study has produced pineapple vinegar that is rich in gallic acid and caffeic acid via 2 steps fermentation. There are many evidences that show the effectiveness of these resources in inhibiting the proliferation and metastasis of the cancer cells through several mechanisms.

    Methods: Freeze-dried pineapple vinegar was evaluated for its in vitro apoptosis and metastasis inhibitory potential using MTT, cell cycle, Annexin V and scratch assays. The in vivo test using BALB/c mice challenged with 4 T1 cells was further investigated by pre-treating the mice with 0.08 or 2 ml/kg body weight of freshly-prepared pineapple vinegar for 28 days. The tumor weight, apoptotic state of cells in tumor, metastasis and immune response of the untreated and pineapple vinegar treatment group were evaluated and compared.

    Results: From the in vitro study, an IC50 value of 0.25 mg/mL after 48 h of treatment was established. Annexin V/PI and scratch closure assays showed that pineapple vinegar induced 70% of cell population to undergo apoptosis and inhibited 30% of wound closure of 4 T1 cells. High concentration of pineapple vinegar (2 ml/kg body weight) led to the reduction of tumor weight and volume by 45%as compared to the untreated 4 T1-challenged mice. This effect might have been contributed by the increase of T cell and NK cells population associated with the overexpression of IL-2 andIFN-γ cytokines and splenocyte cytotoxicity. Furthermore, fewer instances of metastasis events were recorded in the pineapple vinegar treatment group and this could be explained by the downregulation of inflammation related genes (iNOS, NF-kB and COX2), metastasis related genes (iCAM, VEGF and MMP9) and angeogenesis related genes (CD26, TIMP1, HGF, MMP3, IGFBP-1 and IGFBP-2).

    Conclusion: The ability of pineapple vinegar to delay cancer progression portrayed its potential as chemopreventive dietry intervention for cancer therapy.

  14. Mohamad NE, Sidik SM, Akhtari-Zavare M, Gani NA
    BMC Public Health, 2021 03 04;21(1):438.
    PMID: 33663451 DOI: 10.1186/s12889-021-10440-5
    BACKGROUND: Anxiety disorder is one of the most common mental health problems worldwide, including Malaysia, and this issue has gained concern and attention from many, including experts and authorities globally. While average levels of stress and worry may help to motivate students to perform well in their studies, excessive feelings will increase their level of anxiety.

    METHODS: A cross-sectional study was conducted at selected government and private universities throughout Malaysia. A total of 1851 students participated in this study. The students were asked to complete self-administered questionnaires, including socio-demographic, academic, and psychosocial characteristics. The Generalized Anxiety Disorder-7 (GAD-7) questionnaire was used to measure the prevalence risk of anxiety among the students. Chi-square analysis was conducted to find the relationship between the variables and anxiety, and multivariate logistic regression analysis was used to identify the predictors.

    RESULTS: The response rate was 97.90%, where 1821 out of 1860 students participated in the study. The prevalence risk of anxiety in this study was recorded at 29%. The data revealed that academic year, financial support for the study, alcohol consumption, poor sleep quality, body mass index (BMI), having a good friend in the university, having doubt regarding the future, actively involved in the society, and having problems with other students and lecturer(s) were significantly associated with risk of anxiety; with the academic year as the primary predictor.

    CONCLUSIONS: The findings highlight the current prevalence risk of anxiety among university students in Malaysia. The outcome of this study can serve as the evident baseline data and help with the development of specific interventions in addressing and managing the issue appropriately.

  15. Mohamad NE, Keong Yeap S, Beh BK, Romli MF, Yusof HM, Kristeen-Teo YW, et al.
    J Sci Food Agric, 2018 Jan;98(2):534-540.
    PMID: 28631270 DOI: 10.1002/jsfa.8491
    BACKGROUND: Vinegar is widely used as a food additive, in food preparation and as a food supplement. This study compared the phenolic acid profiles and in vivo toxicities, and antioxidant and immunomodulatory effects of coconut, nipah and pineapple juice vinegars, which were respectively prepared via a two-step fermentation using Saccharomyces cerevisiae 7013 INRA and Acetobacter aceti vat Europeans.

    RESULTS: Pineapple juice vinegar, which had the highest total phenolic acid content, also exhibited the greatest in vitro antioxidant capacity compared to coconut juice and nipah juice vinegars. Following acute and sub-chronic in vivo toxicity evaluation, no toxicity and mortality were evident and there were no significant differences in the serum biochemical profiles between mice administered the vinegars versus the control group. In the sub-chronic toxicity evaluation, the highest liver antioxidant levels were found in mice fed with pineapple juice vinegar, followed by coconut juice and nipah juice vinegars. However, compared to the pineapple juice and nipah juice vinegars, the mice fed with coconut juice vinegar, exhibited a higher population of CD4+ and CD8+ T-lymphocytes in the spleen, which was associated with greater levels of serum interleukin-2 and interferon-γ cytokines.

    CONCLUSIONS: Overall, the data suggested that not all vinegar samples cause acute and sub-chronic toxicity in vivo. Moreover, the in vivo immunity and organ antioxidant levels were enhanced, to varying extents, by the phenolic acids present in the vinegars. The results obtained in this study provide appropriate guidelines for further in vivo bioactivity studies and pre-clinical assessments of vinegar consumption. © 2017 Society of Chemical Industry.

  16. Mohamad NE, Yeap SK, Beh BK, Ky H, Lim KL, Ho WY, et al.
    BMC Complement Altern Med, 2018 Jun 25;18(1):195.
    PMID: 29940935 DOI: 10.1186/s12906-018-2199-4
    BACKGROUND: Coconut water has been commonly consumed as a beverage for its multiple health benefits while vinegar has been used as common seasoning and a traditional Chinese medicine. The present study investigates the potential of coconut water vinegar in promoting recovery on acetaminophen induced liver damage.

    METHODS: Mice were injected with 250 mg/kg body weight acetaminophen for 7 days and were treated with distilled water (untreated), Silybin (positive control) and coconut water vinegar (0.08 mL/kg and 2 mL/kg body weight). Level of oxidation stress and inflammation among treated and untreated mice were compared.

    RESULTS: Untreated mice oral administrated with acetaminophen were observed with elevation of serum liver profiles, liver histological changes, high level of cytochrome P450 2E1, reduced level of liver antioxidant and increased level of inflammatory related markers indicating liver damage. On the other hand, acetaminophen challenged mice treated with 14 days of coconut water vinegar were recorded with reduction of serum liver profiles, improved liver histology, restored liver antioxidant, reduction of liver inflammation and decreased level of liver cytochrome P450 2E1 in dosage dependent level.

    CONCLUSION: Coconut water vinegar has helped to attenuate acetaminophen-induced liver damage by restoring antioxidant activity and suppression of inflammation.

  17. Mohamad NE, Abu N, Yeap SK, Alitheen NB
    Integr Cancer Ther, 2019 11 23;18:1534735419880258.
    PMID: 31752555 DOI: 10.1177/1534735419880258
    Background: This study aimed to evaluate the antitumor enhancing effect of bromelain consumption on 4T1-challenged mice treated with cisplatin. Methods: Mice challenged with 4T1 triple-negative breast cancer cells received water, bromelain, cisplatin, or bromelain + cisplatin treatment for 28 days. Tumor size was measured, and lung metastasis was evaluated by clonogenic assay. Expression of tumor inflammatory genes of the harvested tumor was quantified by polymerase chain reaction array and ELISA (enzyme-linked immunosorbent assay). Results: All treatments significantly reduced the size of tumor and lung metastasis, with combination treatment showing the best effect. Also, bromelain alone and combination treatment showed downregulation of the expression of tumor inflammatory genes (Gremlin [GREM1], interleukin 1β [IL-1β], interleukin-4 [IL-4], nuclear factor κB subunit 1 [NFκB1], and prostaglandin-endoperoxide synthase 2 [PTGS2]), tumor nitric oxide level, and serum IL-1β, and IL-4 levels. On the other hand, cisplatin treatment increased the expression of selected inflammatory markers. Conclusion: This study suggests that bromelain treatment could potentiate the antitumor effect of cisplatin on triple-negative breast cancer 4T1 cells through modulating the tumor environmental inflammation.
  18. Mohamad NE, Yeap SK, Abu N, Lim KL, Zamberi NR, Nordin N, et al.
    Food Nutr Res, 2019;63.
    PMID: 30814922 DOI: 10.29219/fnr.v63.1616
    Background: Coconut water and vinegars have been reported to possess potential anti-tumour and immunostimulatory effects. However, the anti-tumour, anti-inflammatory and immunostimulatory effects of coconut water vinegar have yet to be tested.

    Objective: This study investigated the in vitro and in vivo anti-tumour effects of coconut water vinegar on 4T1 breast cancer cells.

    Methods: The 4T1 cells were treated with freeze-dried coconut water vinegar and subjected to MTT cell viability, BrdU, annexin V/PI apoptosis, cell cycle and wound healing assays for the in vitro analysis. For the in vivo chemopreventive evaluation, mice challenged with 4T1 cells were treated with 0.08or 2.00 mL/kg body weight of fresh coconut water vinegar for 28 days. Tumour weight, apoptosis of tumour cells, metastasis and immunity of untreated mice and coconut water vinegar-treated 4T1 challenged mice were compared.

    Results: Freeze-dried coconut water vinegar reduced the cell viability, induced apoptosis and delayed the wound healing effect of 4T1 cells in vitro. In vivo, coconut water vinegar delayed 4T1 breast cancer progression in mice by inducing apoptosis and delaying the metastasis. Furthermore, coconut water vinegar also promoted immune cell cytotoxicity and production of anticancer cytokines. The results indicate that coconut water vinegar delays breast cancer progression by inducing apoptosis in breast cancer cells, suppressing metastasis and activating anti-tumour immunity.

    Conclusion: Coconut water vinegar is a potential health food ingredient with a chemopreventive effect.

  19. Mohamad NE, Yeap SK, Ky H, Ho WY, Boo SY, Chua J, et al.
    Food Nutr Res, 2017;61(1):1368322.
    PMID: 29056887 DOI: 10.1080/16546628.2017.1368322
    Obesity has become a serious health problem worldwide. Various types of healthy food, including vinegar, have been proposed to manage obesity. However, different types of vinegar may have different bioactivities. This study was performed to evaluate the anti-obesity and anti-inflammatory effects of coconut water vinegar on high-fat-diet (HFD)-induced obese mice. Changes in the gut microbiota of the mice were also evaluated. To induce obesity, C57/BL mice were continuously fed an HFD for 33 weeks. Coconut water vinegar (0.08 and 2 ml/kg body weight) was fed to the obese mice from early in week 24 to the end of week 33. Changes in the body weight, fat-pad weight, serum lipid profile, expression of adipogenesis-related genes and adipokines in the fat pad, expression of inflammatory-related genes, and nitric oxide levels in the livers of the untreated and coconut water vinegar-treated mice were evaluated. Faecal samples from the untreated and coconut water vinegar-treated mice (2 ml/kg body weight) were subjected to 16S metagenomic analysis to compare their gut microbiota. The oral intake of coconut water vinegar significantly (p 
  20. Mohamad NE, Yeap SK, Ky H, Liew NWC, Beh BK, Boo SY, et al.
    PMID: 33029159 DOI: 10.1155/2020/1257962
    Obesity is a pandemic metabolic syndrome with increasing incidences every year. Among the significant factors that lead to obesity, overconsumption of high-fat food in daily intake is always the main contributor. Functional foods have shown a positive effect on disease prevention and provide health benefits, including counteracting obesity problem. Vinegar is one of the fermented functional beverages that have been consumed for many years, and different types of vinegar showed different bioactivities and efficacies. In this study, we investigated the potential effects of pineapple vinegar as an antiobesity agent on a high-fat diet- (HFD-) induced C57BL/6 obese mice. C57BL/6 mice were treated with pineapple vinegar (1 mL/kg BW and 0.08 mL/kg BW) for 12 weeks after 24 weeks of HFD incubation. Serum biochemistry profiles, antioxidant assays, qPCR, proteome profiler, and 16S metagenomic were done posttreatment. Our data showed that a high concentration of pineapple vinegar (1 mL/kg BW) treatment significantly (p < 0.05) reduced the bodyweight (∼20%), restored lipid profiles, increased the antioxidant activities, and reduced the oxidative stress. Besides, significant (p < 0.05) regulation of several adipokines and inflammatory-related genes was recorded. Through the regulation of gut microbiota, we found a higher abundance of Akkermansia muciniphila, a microbiota reported to be associated with obesity in the high concentration of pineapple vinegar treatment. Collectively, these data established the mechanism of pineapple vinegar as antiobesity in mice and revealed the potential of pineapple vinegar as a functional food for obesity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links