Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Saputra E, Prawiranegara BA, Nugraha MW, Oh WD, Sugesti H, Evelyn, et al.
    Environ Res, 2023 Oct 01;234:116441.
    PMID: 37331558 DOI: 10.1016/j.envres.2023.116441
    Three specific catalysts, namely ZIF-67 (zeolitic imidazolate framework-67), Co@NCF (Co@Nitrogen-Doped Carbon Framework), and 3D NCF (Three-Dimensional Nitrogen-Doped Carbon Framework), were prepared and studied for pulp and paper mill effluent degradation using heterogeneous activation of peroxymonosulfate (PMS). Numerous characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption, were used to characterize the properties of three different catalysts. 3D NCF is remarkably effective at heterogeneous activation of PMS to generate sulfate radicals to degrade pulp and paper mill effluent (PPME) compared to the other as-prepared catalysts. The catalytic activity reveals a sequence of 3D NCF > Co@NCF > ZIF-67.3D NCF could degrade organic pollutants in 30 min at an initial COD concentration of 1146 mg/L of PPME, 0.2 g/L catalysts, 2 g/L PMS, and 50 °C. Consequently, it was observed that the degradation of PPME using 3D NCF followed first-order kinetics, with an activation energy of 40.54 kJ mol-1. Overall, 3D NCF/PMS system reveals promising performance for PPME removal.
  2. Chan WP, Veksha A, Lei J, Oh WD, Dou X, Giannis A, et al.
    J Environ Manage, 2019 Mar 15;234:65-74.
    PMID: 30616190 DOI: 10.1016/j.jenvman.2018.12.107
    A novel, cost-effective and real-time process monitoring and control system was developed to maintain stable operation of waste-to-energy gasification process. It comprised a feedback loop control that utilized the differential temperatures of the oxidation and reduction zones in the gasifier to determine the regional heat-flow (endothermic or exothermic), to assess the availability of oxidizing agent (for instance, air or O2) at the char bed and to calculate the fuel feeding rate. Based on the correlations developed, the air-to-fuel ratio or the equivalence air ratio (ER) for air gasification could be instantaneously adjusted to maintain stable operation of the gasifier. This study demonstrated a simplification of complex reaction dynamics in the gasification process to differential temperature profiling of the gasifier. The monitoring and control system was tested for more than 70 h of continuous operation in a downdraft fixed-bed gasifier with refuse-derived fuel (RDF) prepared from municipal solid wastes (MSW). With the system, fuel feeding rate could be adjusted accurately to stabilize the operating temperature and ER in the gasifier and generate syngas with consistent properties. Significant reductions in the fluctuations of temperature profiles at oxidation and reduction zones (from higher than 100 °C to lower than 50 °C), differential temperatures (from ±200 to ±50 °C) in gasifier and the flow rate (from 16 ± 6.5 to 12 ± 1.8 L/min), composition of main gas components, LHV (from 6.2 ± 3.1 to 5.7 ± 1.6 MJ/Nm3) and tar content (from 8.0 ± 9.7 to 7.5 ± 4.2 g/Nm3) of syngas were demonstrated. The developed gasifier monitoring and control system is adaptable to various types (updraft, downdraft, and fluidized-bed) and scales (lab, pilot, large scale) of gasifiers with different types of fuel.
  3. Oh WD, Zaeni JRJ, Lisak G, Lin KA, Leong KH, Choong ZY
    Chemosphere, 2021 Aug;277:130313.
    PMID: 33780679 DOI: 10.1016/j.chemosphere.2021.130313
    Engineered biochar is increasingly regarded as a cost-effective and eco-friendly peroxymonosulfate (PMS) activator. Herein, biochar doped with nitrogen and sulfur moieties was prepared by pyrolysis of wood shavings and doping precursor. The doping precursor consists of either urea, thiourea or 1:1 w/w mixture of urea and thiourea (denoted as NSB-U, NSB-T and NSB-UT, respectively). The physicochemical properties of the NSBs were extensively characterized, revealing that they are of noncrystalline carbon with porous structure. The NSBs were employed as PMS activator to degrade organic pollutants particularly methylene blue (MB). It was found that NSB-UT exhibited higher MB removal rate with kapp = 0.202 min-1 due to its relatively high surface area and favorable intrinsic surface moieties (combination of graphitic N and thiophenic S). The effects of catalyst loading, PMS dosage and initial pH were evaluated. Positive enhancement of the MB removal rate can be obtained by carefully increasing the catalyst loading or PMS dosage. Meanwhile, the MB removal rate is greatly influenced by pH due to electrostatic interactions and pH dependent reactions. The NSB-UT can be reused for several cycles to some extent and its catalytic activity can be restored by thermal treatment. Based on the radical scavenger study and XPS analysis, the nonradical pathway facilitated by the graphitic N and thiophenic S active sites are revealed to be the dominant reaction pathway. Overall, the results of this study show that engineered biochar derived from locally available biowaste can be transformed into PMS activator for environmental applications.
  4. Ng JJ, Sim LC, Oh WD, Saravanan P, Tan B, Leong KH
    Environ Sci Pollut Res Int, 2022 Dec;29(57):86068-86076.
    PMID: 34523092 DOI: 10.1007/s11356-021-16449-y
    Herein, we report a detailed study on creating heterojunction between graphitic carbon nitride (g-C3N4) and bismuth phosphate (BiPO4), enhancing the unpaired free electron mobility. This leads to an accelerated photocatalysis of 2,4-dichlorophenols (2,4-DCPs) under sunlight irradiation. The heterojunction formation was efficaciously conducted via a modest thermal deposition technique. The function of g-C3N4 plays a significant role in generating free electrons under sunlight irradiation. Together, the generated electrons at the g-C3N4 conduction band (CB) are transferred and trapped by the BiPO4 to form active superoxide anion radicals (•O2-). These active radicals will be accountable for the photodegradation of 2,4-DCPs. The synthesized composite characteristics were methodically examined through several chemical and physical studies. Due to the inimitable features of both g-C3N4 and BiPO4, its heterojunction formation, 2.5wt% BiPO4/g-C3N4 achieved complete 2,4-DCP removal (100%) in 90 min under sunlight irradiation. This is due to the presence of g-C3N4 that enhanced electron mobility through the formation of heterojunctions that lengthens the electron-hole pairs' lifetime and maximizes the entire solar spectrum absorption to generate active electrons at the g-C3N4 conduction band. Thus, this formation significantly draws the attention for future environmental remediation, especially in enhancing the entire solar spectrum's harvesting.
  5. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
  6. Bharathithasan M, Ravindran DR, Rajendran D, Chun SK, Abbas SA, Sugathan S, et al.
    PLoS One, 2021;16(11):e0260281.
    PMID: 34843539 DOI: 10.1371/journal.pone.0260281
    BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae).

    METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.

    RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.

    CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.

  7. Oh WD, Lim PE, Seng CE, Sujari AN
    Bioresour Technol, 2011 Oct;102(20):9497-502.
    PMID: 21871793 DOI: 10.1016/j.biortech.2011.07.107
    The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.
  8. Gasim MF, Lim JW, Low SC, Lin KA, Oh WD
    Chemosphere, 2022 Jan;287(Pt 4):132458.
    PMID: 34610377 DOI: 10.1016/j.chemosphere.2021.132458
    Over the past decade, there has been a surge of interest in using char (hydrochar or biochar) derived from biomass as persulfate (PS, either peroxymonosulfate or peroxydisulfate) activator for anthropogenic pollutants removal. While extensive investigation showed that char could be used as a PS activator, its sustainability over prolonged application is equivocal. This review provides an assessment of the knowledge gap related to the sustainability of char as a PS activator. The desirable char properties for PS activation are identified, include the high specific surface area and favorable surface chemistry. Various synthesis strategies to obtain the desirable properties during biomass pre-treatment, hydrochar and biochar synthesis, and char post-treatment are discussed. Thereafter, factors related to the sustainability of employing char as a PS activator for anthropogenic pollutants removal are critically evaluated. Among the critical factors include performance uncertainty, competing adsorption process, char stability during PS activation, biomass precursor variation, scalability, and toxic components in char. Finally, some potential research directions are provided. Fulfilling the sustainability factors will provide opportunity to employ char as an economical and efficient catalyst for sustainable environmental remediation.
  9. Saheed IO, Oh WD, Suah FBM
    J Hazard Mater, 2021 04 15;408:124889.
    PMID: 33418525 DOI: 10.1016/j.jhazmat.2020.124889
    In recent times, research interest into the development of biodegradable, cost-effective and environmental friendly adsorbents with favourable properties for adsorption of pollutants is a challenge. Modification of chitosan via different physical and chemical methods have gained attention as a promising approach for removing organic (such as dyes and pharmaceuticals) and inorganic (such as metal/metal ions) pollutants from aqueous medium. In this regard, researchers have reported grafting and cross-linking approach among others as a potentially useful method for chitosan's modification for improved adsorption efficiency with respect to pollutant uptake. This article reviews the trend in chitosan modification, with regards to the summary of some recently published works on modification of chitosan and their adsorption application in pollutants (metal ion, dyes and pharmaceuticals) removal from aqueous medium. The review uniquely highlights some common cross-linkers and grafting procedures for chitosan modification, their influence on structure and adsorption capacity of modified-chitosan with respect to pollutants removal. Findings revealed that the performance of modified chitosan for adsorption of pollutants depends largely on the modification method adopted, materials used for the modification and adsorption experimental conditions. Cross-linking is commonly utilized for improving the chemical and mechanical stabilities of chitosan but usually decreases adsorption capacity of chitosan/modified-chitosan for adsorption of pollutants. However, literature survey revealed that adsorption capacity of cross-linked chitosan based materials have been enhanced in recently published works either by grafting, incorporation of solid adsorbents (e.g metals, clays and activated carbon) or combination of both prior to cross-linking.
  10. Lin XR, Kwon E, Hung C, Huang CW, Oh WD, Lin KA
    J Colloid Interface Sci, 2021 Feb 15;584:749-759.
    PMID: 33176929 DOI: 10.1016/j.jcis.2020.09.104
    As sulfosalicylic acid (SUA) is extensively used as a pharmaceutical product, discharge of SUA into the environment becomes an emerging environmental issue because of its low bio-degradability. Thus, SO4--based advanced oxidation processes have been proposed for degrading SUA because of many advantages of SO4-. As Oxone represents a dominant reagent for producing SO4-, and Co is the most capable metal for activating Oxone to generate SO4-, it is critical to develop an effective but easy-to-use Co-based catalysts for Oxone activation to degrade SUA. Herein, a 3D hierarchical catalyst is specially created by decorating Co3O4 nanocubes (NCs) on macroscale nitrogen-doped carbon form (NCF). This Co3O4-decorated NCF (CONCF) is free-standing, macroscale and even squeezable to exhibit interesting and versatile features. More importantly, CONCF consists of Co3O4 NCs evenly distributed on NCF without aggregation. The NCF not only serves as a support for Co3O4 NCs but also offers additional active sites to synergistically enhance catalytic activities towards Oxone activation. Therefore, CONCF exhibits a higher catalytic activity than the conventional Co3O4 nanoparticles for activating Oxone to fully eliminate SUA in 30 min with a rate constant of 0.142 min-1. CONCF exhibits a much lower Ea value of SUA degradation (35.2 kJ/mol) than reported values, and stable catalytic activities over multi-cyclic degradation of SUA. The mechanism of SUA degradation is also explored, and degradation intermediates of SUA degradation are identified to provide a possible pathway of SUA degradation. These features validate that CONCF is certainly a promising 3D hierarchical catalyst for enhanced Oxone activation to degrade SUA. The findings obtained here are also insightful to develop efficient heterogeneous Oxone-activating catalysts for eliminating emerging contaminants.
  11. Sani S, Adnan R, Oh WD, Iqbal A
    Nanomaterials (Basel), 2021 Oct 16;11(10).
    PMID: 34685183 DOI: 10.3390/nano11102742
    The influence of variable reaction time (tr) on surface/textural properties (surface area, total pore volume, and pore diameter) of carbon-encapsulated magnetite (Fe3O4@C) nanocomposites fabricated by a hydrothermal process at 190 °C for 3, 4, and 5 h was studied. The properties were calculated using the Brunauer-Emmett-Teller (BET) isotherms data. The nanocomposites were characterised using Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetry, and scanning and transmission electron microscopies. Analysis of variance shows tr has the largest effect on pore volume (F value = 1117.6, p value < 0.0001), followed by the surface area (F value = 54.8, p value < 0.0001) and pore diameter (F value = 10.4, p value < 0.001) with R2-adjusted values of 99.5%, 88.5% and 63.1%, respectively. Tukey and Fisher tests confirmed tr rise to have caused increased variations in mean particle sizes (11-91 nm), crystallite sizes (5-21 nm), pore diameters (9-16 nm), pore volume (0.017-0.089 cm3 g-1) and surface area (7.6-22.4 m2 g-1) of the nanocomposites with individual and simultaneous confidence limits of 97.9 and 84.4 (p-adj < 0.05). The nanocomposites' retained Fe-O vibrations at octahedral (436 cm-1) and tetrahedral (570 cm-1) cubic ferrite sites, modest thermal stability (37-60 % weight loss), and large volume-specific surface area with potential for catalytic application in advanced oxidation processes.
  12. Tuan DD, Oh WD, Ghanbari F, Lisak G, Tong S, Andrew Lin KY
    J Colloid Interface Sci, 2020 Nov 01;579:109-118.
    PMID: 32574728 DOI: 10.1016/j.jcis.2020.05.033
    As sulfate-radical (SR)-based advanced oxidation processes are increasingly implemented, Oxone has been frequently-used for generation of SR. While Co3O4 nanoparticle (NP) has been widely-accepted as a promising catalyst for activating Oxone, Co3O4 NPs tend to aggregate in water, losing their reactivity. Thus, many attempts have immobilized Co3O4 NPs on supports, especially carbonaceous substrates, because combination of Co NPs with carbon substrates offers synergistic effects for boosting catalytic activities. Moreover, carbon substrates doped with hetero-atoms (N and S) further increase electron transfer and reactivity. Therefore, it is even promising to immobilize Co NPs onto N/S-doped carbon (NSC) to form Co-embedded NSC (denoted as CoNSC) for enhancing Oxone activation. In this study, a convenient and facile technique is proposed to prepare such a CoNSC via a simple carbonization treatment of a coordination polymer of Co and trithiocyanuric acid (TTCA). The resulting CoNSC exhibits the sheet-like hexagonal morphology with the core-shell configuration, and Co NPs are well-embedded into the N/S-doped carbonaceous matrix, making it an advantageous heterogeneous catalyst for Oxone activation. As Azorubine S (ARS) decolorization is employed as a model reaction of Oxone activation, CoNSC exhibits a higher catalytic activity than pristine Co3O4 and NSC for Oxone activation to decolorize ARS. In comparison to the other reported catalysts, CoNSC also possesses a much lower Ea for ARS decolorization. CoNSC can be also reusable and stable for Oxone activation over multiple cycles without loss of catalytic activity. These features validate that CoNSC is a promising and useful Co-based catalyst for Oxone activation.
  13. Koo PL, Choong ZY, He C, Bao Y, Jaafar NF, Oh WD
    Chemosphere, 2023 Mar;318:137915.
    PMID: 36702411 DOI: 10.1016/j.chemosphere.2023.137915
    In this study, a facile hydrothermal method was employed to prepare Me-doped Bi2Fe4O9 (Me = Zn, Cu, Co, and Mn) as peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) degradation. The characteristics of the Me-doped bismuth ferrites were investigated using various characterization instruments including SEM, TEM, FTIR and porosimeter indicating that the Me-doped Bi2Fe4O9 with nanosheet-like square orthorhombic structure was successfully obtained. The catalytic activity of various Me-doped Bi2Fe4O9 was compared and the results indicated that the Cu-doped Bi2Fe4O9 at 0.08 wt.% (denoted as BFCuO-0.08) possessed the greatest catalytic activity (kapp = 0.085 min-1) over other Me-doped Bi2Fe4O9 under the same condition. The synergistic interaction between Cu, Fe and oxygen vacancies are the key factors which enhanced the performance of Me-doped Bi2Fe4O9. The effects of catalyst loading, PMS dosage, and pH on CIP degradation were also investigated indicating that the performance increased with increasing catalyst loading, PMS dosage, and pH. Meanwhile, the dominant reactive oxygen species was identified using the chemical scavengers with SO4•-, •OH, and 1O2 playing a major role in CIP degradation. The performance of BFCuO-0.08 deteriorated in real water matrix (tap water, river water and secondary effluent) due to the presence of various water matrix species. Nevertheless, the BFCuO-0.08 catalyst possessed remarkable stability and can be reused for at least four successive cycles with >70% of CIP degradation efficiency indicating that it is a promising catalyst for antibiotics removal.
  14. Bao Y, Oh WD, Lim TT, Wang R, Webster RD, Hu X
    Water Res, 2019 03 15;151:64-74.
    PMID: 30594091 DOI: 10.1016/j.watres.2018.12.007
    In this work, nano-bimetallic Co/Fe oxides with different stoichiometric Co/Fe ratios were prepared using a novel one-step solution combustion method. The nano-bimetallic Co/Fe oxides were used for sulfamethoxazole (SMX) degradation via peroxymonosulfate (PMS) activation. The stoichiometric efficiencies of the as-prepared nano-bimetallic catalysts were calculated and compared for the first time. The radical generation was identified by electron paramagnetic resonance (EPR) as well as chemical quenching experiments, in which different scavengers were used and compared. The catalytic PMS activation mechanism in the presence of catalyst was examined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results showed that besides SO4•- and •OH, •OOH was also detected in the PMS/CoFeO2.5 system. Meanwhile, in addition to the previously proposed radical oxidation pathway, the results showed that SMX degradation also involved a non-radical oxidation, which could be verified by the degradation experiment without catalyst as well as the detection of 1O2. In the PMS activation process, cobalt functioned as the active site on CoFeO2.5 while Fe oxide functioned as the adsorption site. The electron transfer mechanism was proposed based on the XPS and metal leaching results. Additionally, via the detection of transformation products, different SMX transformation pathways involving nitration, hydroxylation and hydrolysis in the PMS/CoFeO2.5 system were proposed.
  15. Saheed IO, Oh WD, Suah FBM
    Int J Biol Macromol, 2021 Jul 31;183:1026-1033.
    PMID: 33971228 DOI: 10.1016/j.ijbiomac.2021.05.042
    In this study, chitosan/porous carbon composite (C-PC) modified in 1-Allyl-3-methyl imidazolium bromide [AMIM][Br] under airtight condition was prepared for the removal of Acid Blue-25 dye (AB-25) from aqueous medium. For comparison of adsorption efficiency of C-PC, chitosan-activated carbon composite (C-AC) was also prepared in 1% acetic acid. The adsorbents were characterised using SEM, EDX, XRD, BET, TGA and FTIR. The micrograph of C-PC revealed cavities and slightly rough surfaces dominated with similar sized and irregular shaped stone-like materials which differ from the precursors' micrograph. BET analysis revealed the domination of mesopores on the C-PC and C-AC surfaces, as the hydroxyl and amino group on C-PC are the main active sites for AB-25 dye uptake. The dye was better adsorbed onto C-PC at pH 2 and C-AC at pH 4. The adsorption capacity obtained for C-PC, C-AC, activated carbon (AC) and chitosan (CH) using Langmuir isotherm model are 3333.33 mg/g, 909.90 mg/g, 909.09 mg/g and 833.33 mg/g, respectively. The experimental data are well described by Langmuir and Fruendlich isotherms for adsorption of the dye onto C-PC, AC and CH. C-AC fitted into Langmuir isotherm only. The kinetics of the adsorption fitted into pseudo-second order indicating the possibility of chemical interactions in the adsorption process.
  16. Saheed IO, Yusof ENM, Oh WD, Hanafiah MAKM, Suah FBM
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124798.
    PMID: 37178882 DOI: 10.1016/j.ijbiomac.2023.124798
    Adsorption efficiency of a duo-material blend featuring the fabrication of modified chitosan adsorbents (powder (C-emimAc), bead (CB-emimAc) and sponge (CS-emimAc)) for the removal of Cd(II) from aqueous solution was investigated. The chitosan@activated carbon (Ch/AC) blend was developed in a green ionic solvent, 1-ethyl-3-methyl imidazolium acetate (EmimAc) and its characteristics was examined using FTIR, SEM, EDX, BET and TGA. The possible mechanism of interaction between the composites and Cd(II) was also predicted using the density functional theory (DFT) analysis. The interactions of various blend forms (C-emimAc, CB-emimAc and CS-emimAc) with Cd(II) gave better adsorption at pH 6. The composites also present excellent chemical stability in both acidic and basic conditions. The monolayer adsorption capacities obtained (under the condition 20 mg/L [Cd], adsorbent dosage 5 mg, contact time 1 h) for the CB-emimAc (84.75 mg/g) > C-emimAc (72.99 mg/g) > CS-emimAc (55.25 mg/g), as this was supported by their order of increasing BET surface area (CB-emimAc (120.1 m2/g) > C-emimAc (67.4 m2/g) > CS-emimAc (35.3 m2/g)). The feasible adsorption interactions between Cd(II) and Ch/AC occurs through the O-H and N-H groups of the composites, as supported by DFT analysis in which an electrostatic interactions was predicted as the dominant force. The interaction energy (-1309.35 eV) calculated via DFT shows that the Ch/AC with amino (-NH) and hydroxyl (-OH) groups are more effective with four significant electrostatic interactions with the Cd(II) ion. The various form of Ch/AC composites developed in EmimAc possess good adsorption capacity and stability for the adsorption Cd(II).
  17. Ahmad ARD, Imam SS, Adnan R, Oh WD, Abdul Latip AF, Ahmad AAD
    Int J Biol Macromol, 2023 Feb 28;229:838-848.
    PMID: 36586654 DOI: 10.1016/j.ijbiomac.2022.12.287
    The primary aim of this study is to develop an economical, stable, and effective heterogeneous catalyst for wastewater remediation via the Fenton oxidation process. For this purpose, Fe3O4-montmorillonite alginate (FeMA) composite beads were synthesized by entrapping Fe3O4-montmorillonite in calcium alginate beads. The performance of the catalysts was evaluated via the Fenton degradation of ofloxacin (OFL), an antibiotic that is frequently detected in water bodies. The physiochemical properties of the FeMA composite beads were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). FeMA composite beads were found to have a higher surface area, higher porosity, and better thermal stability compared to pristine alginate beads. The composite beads were subsequently used for Fenton degradation of ofloxacin (OFL) in an aqueous solution. The effects of Fe3O4-montmorillonite loading on alginate, FeMA composite beads dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, and inorganic salts on Fenton degradation of OFL in aqueous solution was investigated. The results revealed that the percentage of OFL degradation reached about 80 % under optimized conditions, while the total organic carbon (TOC) removal reached about 53 %. The entrapment of Fe3O4-montmorillonite in alginate beads results in less iron ions leaching compared to previous observation, and the efficiency remains constant over the five cycles investigated. The kinetics of the Fenton degradation process are best fitted to the pseudo-first-order kinetic model. It is therefore believed that FeMA composite beads can be a promising material for wastewater remediation via the Fenton oxidation process.
  18. Zhao N, Liu K, He C, Zhao D, Zhu L, Zhao C, et al.
    Environ Pollut, 2022 Feb 05;300:118965.
    PMID: 35134429 DOI: 10.1016/j.envpol.2022.118965
    Zero valent iron-loaded biochar (Fe0-BC) has shown promise for the removal of various organic pollutants, but is restricted by reduced specific surface area, low utilization efficiency and limited production of reactive oxygen species (ROS). In this study, iron carbide-loaded activated biochar (Fe3C-AB) with a high surface area was synthesized through the pyrolysis of H3PO4 activated biochar with Fe(NO3)3, tested for removing bisphenol A (BPA) and elucidated the adsorption and degradation mechanisms. As a result, H3PO4 activated biochar was beneficial for the transformation of Fe0 to Fe3C. Fe3C-AB exhibited a significantly higher removal rate and removal capacity for BPA than that of Fe0-BC within a wide pH range of 5.0-11.0, and its performance was maintained even under extremely high salinity and different water sources. Moreover, X-ray photoelectron spectra and density functional theory calculations confirmed that hydrogen bonds were formed between the COOH groups and BPA. 1O2 was the major reactive species, constituting 37.0% of the removal efficiency in the degradation of BPA by Fe3C-AB. Density functional reactivity theory showed that degradation pathway 2 of BPA was preferentially attacked by ROS. Thus, Fe3C-AB with low cost and excellent recycling performance could be an alternative candidate for the efficient removal of contaminants.
  19. Lin JY, Lee J, Oh WD, Kwon E, Tsai YC, Lisak G, et al.
    J Colloid Interface Sci, 2021 Nov 15;602:95-104.
    PMID: 34118608 DOI: 10.1016/j.jcis.2021.05.098
    Metal Organic Frameworks (MOFs) represent a promising class of metallic catalysts for reduction of nitrogen-containing contaminants (NCCs), such as 4-nitrophenol (4-NP). Nevertheless, most researches involving MOFs for 4-NP reduction employ noble metals in the form of fine powders, making these powdered noble metal-based MOFs impractical and inconvenient for realistic applications. Thus, it would be critical to develop non-noble-metal MOFs which can be incorporated into macroscale and porous supports for convenient applications. Herein, the present study proposes to develop a composite material which combines advantageous features of macroscale/porous supports, and nanoscale functionality of MOFs. In particular, copper foam (CF) is selected as a macroscale porous medium, which is covered by nanoflower-structured CoO to increase surfaces for growing a cobaltic MOF, ZIF-67. The resultant composite comprises of CF covered by CoO nanoflowers decorated with ZIF-67 to form a hierarchical 3D-structured catalyst, enabling this ZIF-67@Cu foam (ZIF@CF) a promising catalyst for reducing 4-NP, and other NCCs. Thus, ZIF@CF can readily reduce 4-NP to 4-AP with a significantly lower Ea of 20 kJ/mol than reported values. ZIF@CF could be reused over 10 cycles and remain highly effective for 4-NP reduction. ZIF@CF also efficiently reduces other NCCs, such as 2-nitrophenol, 3-nitrophenol, methylene blue, and methyl orange. ZIF@CF can be adopted as catalytic filters to enable filtration-type reduction of NCCs by passing NCC solutions through ZIF@CF to promptly and conveniently reduce NCCs. The versatile and advantageous catalytic activity of ZIF@CF validates that ZIF@CF is a promising and practical heterogeneous catalyst for reductive treatments of NCCs.
  20. Wu M, Chang B, Lim TT, Oh WD, Lei J, Mi J
    J Hazard Mater, 2018 Oct 15;360:391-401.
    PMID: 30130697 DOI: 10.1016/j.jhazmat.2018.08.015
    The Zn-Al mixed metal oxide (ZnAl-MMO) with a plate-like structure was derived from Zn-Al layered double hydroxide. The ZnAl-MMO with a Zn/Al molar ratio of 3:1 exhibits superior absorption ability for H2S in a simulated coal gas at 600 ℃ due to the special structure of the ZnAl-MMO. Besides ZnS, elemental sulfur is also produced during the desulfurization process. The deactivation model could well simulate the absorption behavior of H2S. The sulfidation reaction over the sorbent shows large initial reaction rate constants (1110-5390 m3 min-1  kg-1) and low activation energy (29.5 kJ mol-1). The regeneration rate of the used sorbent can reach 99.8% under the optimum conditions. The regenerated sorbents still show high sulfur capacity (ca. 30%), implying its great application potential for industrial-scale desulfurization of the hot coal gas.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links