Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, et al.
    J Hazard Mater, 2021 03 05;405:124138.
    PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138
    Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
  2. Yek PNY, Peng W, Wong CC, Liew RK, Ho YL, Wan Mahari WA, et al.
    J Hazard Mater, 2020 08 05;395:122636.
    PMID: 32298946 DOI: 10.1016/j.jhazmat.2020.122636
    We developed an innovative single-step pyrolysis approach that combines microwave heating and activation by CO2 or steam to transform orange peel waste (OPW) into microwave activated biochar (MAB). This involves carbonization and activation simultaneously under an inert environment. Using CO2 demonstrates dual functions in this approach, acting as purging gas to provide an inert environment for pyrolysis while activating highly porous MAB. This approach demonstrates rapid heating rate (15-120 °C/min), higher temperature (> 800 °C) and shorter process time (15 min) compared to conventional method using furnace (> 1 h). The MAB shows higher mass yield (31-44 wt %), high content of fixed carbon (58.6-61.2 wt %), Brunauer Emmett Teller (BET) surface area (158.5-305.1 m2/g), low ratio of H/C (0.3) and O/C (0.2). Activation with CO2 produces more micropores than using steam that generates more mesopores. Steam-activated MAB records a higher adsorption efficiency (136 mg/g) compared to CO2 activation (91 mg/g), achieving 89-93 % removal of Congo Red dye. The microwave pyrolysis coupled with steam or CO2 activation thereby represents a promising approach to transform fruit-peel waste to microwave-activated biochar that remove hazardous dye.
  3. Yek PNY, Wan Mahari WA, Kong SH, Foong SY, Peng W, Ting H, et al.
    Bioresour Technol, 2022 Mar;347:126687.
    PMID: 35007740 DOI: 10.1016/j.biortech.2022.126687
    Thermal co-processing of lignocellulosic and aquatic biomass, such as algae and shellfish waste, has shown synergistic effects in producing value-added energy products with higher process efficiency than the traditional method, highlighting the importance of scaling up to pilot-scale operations. This article discusses the design and operation of pilot-scale reactors for torrefaction, pyrolysis, and gasification, as well as the key parameters of co-processing biomass into targeted and improved quality products for use as fuel, agricultural application, and environmental remediation. Techno-economic analysis reveals that end product selling price, market dynamics, government policies, and biomass cost are crucial factors influencing the sustainability of thermal co-processing as a feasible approach to utilize the biomass. Because of its simplicity, pyrolysis allows greater energy recovery, while gasification has the highest net present value (profitability). Integration of liquefaction, hydrothermal, and fermentation pre-treatment technology has the potential to increase energy efficiency while reducing process residues.
  4. Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, et al.
    Environ Chem Lett, 2021 Jan 13.
    PMID: 33462541 DOI: 10.1007/s10311-020-01177-5
    Dwindling fossil fuels and improper waste management are major challenges in the context of increasing population and industrialization, calling for new waste-to-energy sources. For instance, refuse-derived fuels can be produced from transformation of municipal solid waste, which is forecasted to reach 2.6 billion metric tonnes in 2030. Gasification is a thermal-induced chemical reaction that produces gaseous fuel such as hydrogen and syngas. Here, we review refuse-derived fuel gasification with focus on practices in various countries, recent progress in gasification, gasification modelling and economic analysis. We found that some countries that replace coal by refuse-derived fuel reduce CO2 emission by 40%, and decrease the amount municipal solid waste being sent to landfill by more than 50%. The production cost of energy via refuse-derived fuel gasification is estimated at 0.05 USD/kWh. Co-gasification by using two feedstocks appears more beneficial over conventional gasification in terms of minimum tar formation and improved process efficiency.
  5. Yan L, Le QV, Sonne C, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 04 05;407:124771.
    PMID: 33388721 DOI: 10.1016/j.jhazmat.2020.124771
    Soil and water contaminated with radionuclides threaten the environment and public health during leaks from nuclear power plants. Remediation of radionuclides at the contaminated sites uses mainly physical and chemical methods such as vitrification, chemical immobilization, electro-kinetic remediation and soil excavation, capping and washing being among the preferred methods. These traditional technologies are however costly and less suitable for dealing with large-area pollution. In contrast to this, cost-effective and environment-friendly alternatives such as phytoremediation using plants to remove radionuclides from polluted sites in situ represent promising alternatives for environmental cleanup. Understanding the physiology and molecular mechanisms of radionuclides accumulation in plants is essential to optimize and improve this new remediation technology. Here, we give an overview of radionuclide contamination in the environment and biochemical characteristics for uptake, transport, and compartmentation of radionuclides in plants that characterize phytoextraction and its efficiency. Phytoextraction is an eco-friendly and efficient method for environmental removal of radionuclides at contaminated sites such as mine tailings. Selecting the most proper plant for the specific purpose, however, is important to obtain the best result together with, for example, applying soil amendments such as citric acid. In addition, using genetic engineering and optimizing agronomic management practices including regulation of atmospheric CO2 concentration, reasonable measures of fertilization and rational water management are important as well. For future application, the technique needs commercialization in order to fully exploit the technique at mining activities and nuclear industries.
  6. Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 02 05;403:123658.
    PMID: 33264867 DOI: 10.1016/j.jhazmat.2020.123658
    There is a global need to use plants to restore the ecological environment. There is no systematic review of phytoremediation mechanisms and the parameters for environmental pollution. Here, we review this situation and describe the purification rate of different plants for different pollutants, as well as methods to improve the purification rate of plants. This is needed to promote the use of plants to restore the ecosystems and the environment. We found that plants mainly use their own metabolism including the interaction with microorganisms to repair their ecological environment. In the process of remediation, the purification factors of plants are affected by many conditions such as light intensity, stomatal conductance, temperature and microbial species. In addition the efficiency of phytoremediation is depending on the plants species-specific metabolism including air absorption and photosynthesis, diversity of soil microorganisms and heavy metal uptake. Although the use of nanomaterials and compost promote the restoration of plants to the environment, a high dose may have negative impacts on the plants. In order to improve the practicability of the phytoremediation on environmental restoration, further research is needed to study the effects of different kinds of catalysts on the efficiency of phytoremediation. Thus, the present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.
  7. Wang Y, Van Le Q, Yang H, Lam SS, Yang Y, Gu H, et al.
    Chemosphere, 2021 Oct;281:130835.
    PMID: 33992848 DOI: 10.1016/j.chemosphere.2021.130835
    The increase in global population size over the past 100 decades has doubled the requirements for energy resources. To mitigate the limited fossil fuel available, new clean energy sources being environmental sustainable for replacement of traditional energy sources are explored to supplement the current scarcity. Biomass containing lignin and cellulose is the main raw material to replace fossil energy given its abundance and lower emission of greenhouse gases and NOx when transformed into energy. Bacteria, fungi and algae decompose lignocellulose leading to generation of hydrogen, methane, bioethanol and biodiesel being the clean energy used for heating, power generation and the automobile industry. Microbial Fuel Cell (MFC) uses microorganisms to decompose biomass in wastewater to generate electricity and remove heavy metals in wastewater. Biomass contains cellulose, hemicellulose, lignin and other biomacromolecules which need hydrolyzation for conversion into small molecules by corresponding enzymes in order to be utilized by microorganisms. This paper discusses microbial decomposition of biomass into clean energy and the five major ways of clean energy production, and its economic benefits for future renewable energy security.
  8. Wan Mahari WA, Azwar E, Li Y, Wang Y, Peng W, Ma NL, et al.
    Sci Total Environ, 2020 Nov 10;742:140681.
    PMID: 33167298 DOI: 10.1016/j.scitotenv.2020.140681
    The deforestation and burning of the Amazon and other rainforests is having a cascade of effects on global climate, biodiversity, human health and local and regional socioeconomics. This challenging situation demands a sustainable exploitation of the region's resources in accordance with the United Nations (UNs) Sustainable Development Goals (SDGs) in order to meet Good Environmental Status and reduce poverty. The management of forests sustainability spans across at least eight of the 17 UN SDGs mainly to combat desertification, halt biodiversity loss, and reverse land degradation. Significant changes are needed if we are to sustain the world's rainforests and thereby the global climate and biodiversity. These measures and mitigations are of global responsibility requiring both developed and developing nations such as the United States, EU, and China to change their policies and stand regarding their high demand for meat and hardwood. When possible, non-profit tree-planting internet browsers should be implemented by governments and institutions. So far, there is a lack of active use of the UN SDGs and the countries must therefore need to fully adopt the UN SDGs in order to help the situation. One way to enforce this could be through imposing economic penalties to governments and national institutions that do not adhere to for example publishing open access of data and other important information relevant for the mission of the UN SDGs.
  9. Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, et al.
    J Hazard Mater, 2020 12 05;400:123156.
    PMID: 32574879 DOI: 10.1016/j.jhazmat.2020.123156
    A review of valorization of oyster mushroom species and waste generated in the mushroom cultivation is presented, with a focus on the cultivation and valorization techniques, conditions, current research status and particularly the hazard mitigation and value-added recovery of the waste mushroom substrate (WMS) - an abundant waste in mushroom cultivation industry. Based on the studies reviewed, the production rate of the present mushroom industry is inadequate to meet market demands. There is a need for the development of new mushroom cultivation methods that can guarantee an increase in mushroom productivity and quality (nutritional and medicinal properties). This review shows that the cylindrical baglog cultivation method is more advantageous compared with the wood tray cultivation method to improve the mushroom yield and cost efficiency. Approximately 5 kg of potentially hazardous WMS (spreading diseases in mushroom farm) is generated for production of 1 kg of mushroom. This encourages various valorization of WMS for use in agricultural and energy conversion applications, mainly as biocompost, plant growing media, and bioenergy. The use of WMS as biofertilizer has shown desirable performance compared to conventional chemical fertilizer, whilst the use of WMS as energy feedstock could produce cleaner bioenergy sources compared to conventional fuels.
  10. Wan Mahari WA, Nam WL, Sonne C, Peng W, Phang XY, Liew RK, et al.
    Bioresour Technol, 2020 Sep;312:123572.
    PMID: 32470829 DOI: 10.1016/j.biortech.2020.123572
    Microwave vacuum pyrolysis of palm kernel shell was examined to produce engineered biochar for application as additive in agriculture application. The pyrolysis approach, performed at 750 W of microwave power, produced higher yield of porous biochar (28 wt%) with high surface area (270 cm2/g) compared to the yield obtained by conventional approach (<23 wt%). Addition of the porous biochar in mushroom substrate showed increased moisture content (99%) compared to the substrate without biochar (96%). The mushroom substrate added with biochar (150 g) was optimal in shortening formation, growth, and full colonization of the mycelium within one month. Using 2.5% of the biochar in mushroom substrate desirably maintained the optimum pH level (6.8-7) during the mycelium colonization period, leading to high mycelium growth (up to 91%) and mushroom yield (up to 280 g). The engineered biochar shows great potential as moisture retention and neutralizing agent in mushroom cultivation.
  11. Wan Mahari WA, Awang S, Zahariman NAZ, Peng W, Man M, Park YK, et al.
    J Hazard Mater, 2022 Feb 05;423(Pt A):127096.
    PMID: 34523477 DOI: 10.1016/j.jhazmat.2021.127096
    Microwave co-pyrolysis was examined as an approach for simultaneous reduction and treatment of environmentally hazardous hospital plastic waste (HPW), lignocellulosic (palm kernel shell, PKS) and triglycerides (waste vegetable oil, WVO) biowaste as co-feedstock. The co-pyrolysis demonstrated faster heating rate (16-43 °C/min) compared to microwave pyrolysis of single feedstock (9-17 °C/min). Microwave co-pyrolysis of HPW/WVO performed at 1:1 ratio produced a higher yield (80.5 wt%) of hydrocarbon liquid fuel compared to HPW/PKS (78.2 wt%). The liquid oil possessed a low nitrogen content (< 4 wt%) and free of sulfur that could reduce the release of hazardous pollutants during its use as fuel in combustion. In particular, the liquid oil obtained from co-pyrolysis of HPW/WVO has low oxygenated compounds (< 16%) leading to reduction in generation of potentially hazardous sludge or problematic acidic tar during oil storage. Insignificant amount of benzene derivatives (< 1%) was also found in the liquid oil, indicating the desirable feature of this pyrolysis approach to suppress the formation of toxic polycyclic aromatic hydrocarbons (PAHs). Microwave co-pyrolysis of HPW/WVO improved the yield and properties of liquid oil for potential use as a cleaner fuel, whereas the liquid oil from co-pyrolysis of HPW/PKS is applicable in the synthesis of phenolic resin.
  12. Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132559.
    PMID: 34655643 DOI: 10.1016/j.chemosphere.2021.132559
    Global production of shellfish aquaculture is steadily increasing owing to the growing market demands for shellfish. The intensification of shellfish aquaculture to maximize production rate has led to increased generation of aquaculture waste streams, particularly the effluents and shellfish wastes. If not effectively managed, these wastes could pose serious threats to human health and the ecosystem while compromising the overall sustainability of the industry. The present work comprehensively reviews the source, composition, and environmental implications of shellfish wastes and aquaculture wastewater. Moreover, recent advancements in the valorization of shellfish wastes into value-added biochar via emerging thermochemical and modification techniques are scrutinized. The utilization of the produced biochar in removing emerging pollutants from aquaculture wastewater is also discussed. It was revealed that shellfish waste-derived biochar exhibits relatively higher adsorption capacities (300-1500 mg/g) compared to lignocellulose biochar (<200 mg/g). The shellfish waste-derived biochar can be effectively employed for the removal of various contaminants such as antibiotics, heavy metals, and excessive nutrients from aquaculture wastewater. Finally, future research priorities and challenges faced to improve the sustainability of the shellfish aquaculture industry to effectively support global food security are elaborated. This review envisages that future studies should focus on the biorefinery concept to extract more useful compounds (e.g., carotenoid, chitin) from shellfish wastes for promoting environmental-friendly aquaculture.
  13. Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, et al.
    Chemosphere, 2022 Mar;291(Pt 2):133036.
    PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036
    The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
  14. Thanh Hai L, Tran QB, Tra VT, Nguyen TPT, Le TN, Schnitzer H, et al.
    Environ Pollut, 2020 Oct;265(Pt B):114853.
    PMID: 32480006 DOI: 10.1016/j.envpol.2020.114853
    This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.
  15. Tabatabaei M, Hosseinzadeh-Bandbafha H, Yang Y, Aghbashlo M, Lam SS, Montgomery H, et al.
    J Clean Prod, 2021 Sep 01;313:127880.
    PMID: 34131367 DOI: 10.1016/j.jclepro.2021.127880
    On January 30, 2020, the World Health Organization identified SARS-CoV-2 as a public health emergency of global concern. Accordingly, the demand for personal protective equipment (PPE), including medical face masks, has sharply risen compared with 2019. The new situation has led to a sharp increase in energy demand and the environmental impacts associated with these product systems. Hence, the pandemic's effects on the environmental consequences of various PPE types, such as medical face masks, should be assessed. In light of that, the current study aimed to identify the environmental hot-spots of medical face mask production and consumption by using life cycle assessment (LCA) and tried to provide solutions to mitigate the adverse impacts. Based on the results obtained, in 2020, medical face masks production using fossil-based plastics causes the loss of 2.03 × 103 disability-adjusted life years (DALYs); 1.63 × 108 PDF*m2*yr damage to ecosystem quality; the climate-damaging release of 2.13 × 109 kg CO2eq; and 5.65 × 1010 MJ damage to resources. Besides, annual medical face mask production results in 5.88 × 104 TJ demand for exergy. On the other hand, if used makes are not appropriately handled, they can lead to 4.99 × 105 Pt/yr additional damage to the environment in 2020 as determined by the EDIP 2003. Replacement of fossil-based plastics with bio-based plastics, at rates ranging from 10 to 100%, could mitigate the product's total yearly environmental damage by 4-43%, respectively. Our study calls attention to the environmental sustainability of PPE used to prevent virus transmission in the current and future pandemics.
  16. Sonne C, Siebert U, Gonnsen K, Desforges JP, Eulaers I, Persson S, et al.
    Environ Int, 2020 06;139:105725.
    PMID: 32311628 DOI: 10.1016/j.envint.2020.105725
    Here we review contaminant exposure and related health effects in six selected Baltic key species. Sentinel species included are common eider, white-tailed eagle, harbour porpoise, harbour seal, ringed seal and grey seal. The review represents the first attempt of summarizing available information and baseline data for these biomonitoring key species exposed to industrial hazardous substances focusing on anthropogenic persistent organic pollutants (POPs). There was only limited information available for white-tailed eagles and common eider while extensive information exist on POP exposure and health effects in the four marine mammal species. Here we report organ-tissue endpoints (pathologies) and multiple biomarkers used to evaluate health and exposure of key species to POPs, respectively, over the past several decades during which episodes of significant population declines have been reported. Our review shows that POP exposure affects the reproductive system and survival through immune suppression and endocrine disruption, which have led to population-level effects on seals and white-tailed eagles in the Baltic. It is notable that many legacy contaminants, which have been banned for decades, still appear to affect Baltic wildlife. With respect to common eiders, changes in food composition, quality and contaminant exposure seem to have population effects which need to be investigated further, especially during the incubation period where the birds fast. Since new industrial contaminants continuously leak into the environment, we recommend continued monitoring of them in sentinel species in the Baltic, identifying possible effects linked to climate change, and modelling of population level effects of contaminants and climate change.
  17. Ranjbari M, Shams Esfandabadi Z, Shevchenko T, Chassagnon-Haned N, Peng W, Tabatabaei M, et al.
    J Hazard Mater, 2022 01 15;422:126724.
    PMID: 34399217 DOI: 10.1016/j.jhazmat.2021.126724
    Improper healthcare waste (HCW) management poses significant risks to the environment, human health, and socio-economic sustainability due to the infectious and hazardous nature of HCW. This research aims at rendering a comprehensive landscape of the body of research on HCW management by (i) mapping the scientific development of HCW research, (ii) identifying the prominent HCW research themes and trends, and (iii) providing a research agenda for HCW management towards a circular economy (CE) transition and sustainable environment. The analysis revealed four dominant HCW research themes: (1) HCW minimization, sustainable management, and policy-making; (2) HCW incineration and its associated environmental impacts; (3) hazardous HCW management practices; and (4) HCW handling and occupational safety and training. The results showed that the healthcare industry, despite its potential to contribute to the CE transition, has been overlooked in the CE discourse due to the single-use mindset of the healthcare industry in the wake of the infectious, toxic, and hazardous nature of HCW streams. The findings shed light on the HCW management domain by uncovering the current status of HCW research, highlighting the existing gaps and challenges, and providing potential avenues for further research towards a CE transition in the healthcare industry and HCW management.
  18. Ranjbari M, Shams Esfandabadi Z, Zanetti MC, Scagnelli SD, Siebers PO, Aghbashlo M, et al.
    J Clean Prod, 2021 May 15;297:126660.
    PMID: 34785869 DOI: 10.1016/j.jclepro.2021.126660
    The COVID-19 pandemic has immensely impacted the economic, social, and environmental pillars of sustainability in human lives. Due to the scholars' increasing interest in responding to the urgent call for action against the pandemic, the literature of sustainability research considering COVID-19 consequences is very fragmented. Therefore, a comprehensive review of the COVID-19 implications for sustainability practices is still lacking. This research aims to analyze the effects of COVID-19 on the triple bottom line (TBL) of sustainability to support the future sustainable development agenda. To achieve that, the following research questions are addressed by conducting a systematic literature review: (i) what is the current status of research on the TBL of sustainability considering COVID-19 implications? (ii) how does COVID-19 affect the TBL of sustainability? and (iii) what are the potential research gaps and future research avenues for sustainable development post COVID-19? The results manifest the major implications of the COVID-19 outbreak for the triple sustainability pillars and the sustainable development agenda from the economic, social, and environmental points of view. The key findings provide inclusive insights for governments, authorities, practitioners, and policy-makers to alleviate the pandemic's negative impacts on sustainable development and to realize the sustainability transition opportunities post COVID-19. Finally, five research directions for sustainable development corresponding to the United Nations' sustainable development goals (SDGs) post COVID-19 are provided, as follows: (1) sustainability action plan considering COVID-19 implications: refining sustainability goals and targets and developing measurement framework; (2) making the most of sustainability transition opportunities in the wake of COVID-19: focus on SDG 12 and SDG 9; (3) innovative solutions for economic resilience towards sustainability post COVID-19: focus on SDG 1, SDG 8, and SDG 17; (4) in-depth analysis of the COVID-19 long-term effects on social sustainability: focus on SDG 4, SDG 5, and SDG 10; and (5) expanding quantitative research to harmonize the COVID-19-related sustainability research.
  19. Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, et al.
    Environ Pollut, 2023 Nov 01;336:122417.
    PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417
    Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links