Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Duong M, Islam S, Rangarajan S, Teo K, O'Byrne PM, Schünemann HJ, et al.
    Lancet Respir Med, 2013 Oct;1(8):599-609.
    PMID: 24461663 DOI: 10.1016/S2213-2600(13)70164-4
    BACKGROUND: Despite the rising burden of chronic respiratory diseases, global data for lung function are not available. We investigated global variation in lung function in healthy populations by region to establish whether regional factors contribute to lung function.

    METHODS: In an international, community-based prospective study, we enrolled individuals from communities in 17 countries between Jan 1, 2005, and Dec 31, 2009 (except for in Karnataka, India, where enrolment began on Jan 1, 2003). Trained local staff obtained data from participants with interview-based questionnaires, measured weight and height, and recorded forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC). We analysed data from participants 130-190 cm tall and aged 34-80 years who had a 5 pack-year smoking history or less, who were not affected by specified disorders and were not pregnant, and for whom we had at least two FEV₁ and FVC measurements that did not vary by more than 200 mL. We divided the countries into seven socioeconomic and geographical regions: south Asia (India, Bangladesh, and Pakistan), east Asia (China), southeast Asia (Malaysia), sub-Saharan Africa (South Africa and Zimbabwe), South America (Argentina, Brazil, Colombia, and Chile), the Middle East (Iran, United Arab Emirates, and Turkey), and North America or Europe (Canada, Sweden, and Poland). Data were analysed with non-linear regression to model height, age, sex, and region.

    FINDINGS: 153,996 individuals were enrolled from 628 communities. Data from 38,517 asymptomatic, healthy non-smokers (25,614 women; 12,903 men) were analysed. For all regions, lung function increased with height non-linearly, decreased with age, and was proportionately higher in men than women. The quantitative effect of height, age, and sex on lung function differed by region. Compared with North America or Europe, FEV1 adjusted for height, age, and sex was 31·3% (95% CI 30·8-31·8%) lower in south Asia, 24·2% (23·5-24·9%) lower in southeast Asia, 12·8% (12·4-13·4%) lower in east Asia, 20·9% (19·9-22·0%) lower in sub-Saharan Africa, 5·7% (5·1-6·4%) lower in South America, and 11·2% (10·6-11·8%) lower in the Middle East. We recorded similar but larger differences in FVC. The differences were not accounted for by variation in weight, urban versus rural location, and education level between regions.

    INTERPRETATION: Lung function differs substantially between regions of the world. These large differences are not explained by factors investigated in this study; the contribution of socioeconomic, genetic, and environmental factors and their interactions with lung function and lung health need further clarification.

    FUNDING: Full funding sources listed at end of the paper (see Acknowledgments).

  2. Shahrir M, Shahdan M, Shahid M, Sulaiman W, Mokhtar AM, Othman M, et al.
    Int J Rheum Dis, 2008;11(3):287-292.
    DOI: 10.1111/j.1756-185X.2008.00379.x
    Aim: This is a rheumatoid arthritis (RA) descriptive study, the first of its kind carried out in Malaysia.
    Methods: This descriptive study involved 1084 RA patients' epidemiological and clinical data taken from Selayang, Putrajaya, Taiping and Seremban hospitals from June 2004 to December 2005.
    Results: One thousand and eighty-four RA patients'data were analysed; 960 (88.6%) patients were female and 124 (11.4%) were male, approximately 8 : 1 M : F ratio. The majority of the patients were Indian (591; 54.5%), followed by the Malays (340; 31.4%), Chinese (126; 11.6%), indigenous (13; 1.2%) and others (14; 1.3%). Mean age was 49.6 ± 11.8 years with the youngest being 15 years and the oldest 88 years of age. Mean age for males was 52.0 ± 12.0 and females 49.3 ± 11.7 years (P =; 0.017). Most of these patients were housewives (565; 52.1%), followed by paid workers (266; 24.5%), retired patients (80; 7.4%), unemployed (76; 7.0%) and others (97; 8.9%). Mean duration of illness was 8.4 ± 6.7 years; 805 (74.3%) patients were relatively new patients (≤ 2 years illness duration) and 279 (25.7%) patients had illness duration > 2 years. Eight hundred and six (74.4%) were seropositive RA patients and 385 (35.5%) had presence of deformity. The majority of patients were treated with methotrexate (178; 16.4%), followed by combination of methotrexate, sulfasalazine and hydroxychloroquine (143; 13.2%), leflunomide (140; 12.9%), sulfasalazine (133; 12.3%) and combination of methotrexate and sulfasalazine (108; 10%).
    Conclusion: In the above study, the majority of patients were female (960; 88.6%), Indian (591; 54.5%), had a mean age of 49.6 ± 11.8 years, most were housewives with a mean duration of illness of 8.4 ± 6.7 years and were treated with methotrexate (178; 16.4%). The results of the study may help Malaysian rheumaologists to understand their patients better and treat RA holistically.
    Comment in: Yeap SS. Comment on: Multicentre survey of rheumatoid arthritis patients from Ministry of Health rheumatology centres in Malaysia. Int J Rheum Dis. 2009 Jul;12(2):177-8; author reply 179. doi: 10.1111/j.1756-185X.2009.01403.x. PubMed PMID: 20374340.
  3. Marin-Mogollon C, Salman AM, Koolen KMJ, Bolscher JM, van Pul FJA, Miyazaki S, et al.
    PMID: 31058097 DOI: 10.3389/fcimb.2019.00096
    Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.
  4. Hassan M, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Shahzadi S, Raza H, et al.
    Bioorg Chem, 2019 10;91:103138.
    PMID: 31446329 DOI: 10.1016/j.bioorg.2019.103138
    In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer's disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.
  5. Khan MA, Khan S, Kazi M, Alshehri SM, Shahid M, Khan SU, et al.
    Pharmaceutics, 2021 Oct 06;13(10).
    PMID: 34683925 DOI: 10.3390/pharmaceutics13101632
    Norfloxacin (NOR), widely employed as an anti-bacterial drug, has poor oral bioavailability. Nano based drug delivery systems are widely used to overcome the existing oral bioavailability challenges. Lipid-Polymer Hybrid Nanoparticles (LPHNs) exhibit the distinctive advantages of both polymeric and liposomes nanoparticles, while excluding some of their disadvantages. In the current study, NOR loaded LPHNs were prepared, and were solid amorphous in nature, followed by in vitro and in vivo evaluation. The optimized process conditions resulted in LPHNs with the acceptable particle size 121.27 nm, Polydispersity Index (PDI) of 0.214 and zeta potential of -32 mv. The addition of a helper lipid, oleic acid, and polymers, ethyl cellulose, substantially increased the encapsulation efficiency (EE%) (65% to 97%). In vitro study showed a sustained drug release profile (75% within 12 h) for NOR LPHNs. The optimized NOR LPHNs showed a significant increase (p < 0.05) in bioavailability compared to the commercial product. From the acute toxicity study, the LD50 value was found to be greater than 1600 mg/kg. The molecular modelling studies substantiated the experimental results with the best combination of polymers and surfactants that produced highly stable LPHNs. Therefore, LPHNs proved to be a promising system for the delivery of NOR, as well as for other antibiotics and hydrophobic drugs.
  6. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
  7. Ur-Rehman A, Khan SG, Naqvi SAR, Ahmad M, Akhtar N, Bokhari TH, et al.
    Pak J Pharm Sci, 2021 Jan;34(1(Special)):441-446.
    PMID: 34275792
    A series of new derivatives of 4-(2-chloroethyl)morpholine hydrochloride (5) were efficiently synthesized. Briefly, different aromatic organic acids (1a-f) were refluxed to acquire respective esters (2a-f) using conc. H2SO4 as catalyst. The esters were subjected to nucleophillic substitution by monohydrated hydrazine to acquire hydrazides (3a-f). The hydrazides were cyclized with CS2 in the presence of KOH to yield corresponding oxadiazoles (4a-f). Finally, the derivatives, 6a-f, were prepared by reacting oxadiazoles (4a-f) with 5 using NaH as activator. Structures of all the derivatives were elucidated through 1D-NMR EI-MS and IR spectral data. All these molecules were subjected to antibacterial and hemolytic activities and showed good antibacterial and hemolytic potential relative to the reference standards.
  8. Rubab K, Abbasi MA, Rehman A, Siddiqui SZ, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2017 Jul;30(4):1263-1274.
    PMID: 29039324
    The undertaken research was initiated by transforming 2-(1H-Indol-3-yl)acetic acid (1) in catalytic amount of sulfuric acid and ethanol to ethyl 2-(1H-Indol-3-yl)acetate (2), which was then reacted with hydrazine monohydrate in methanol to form 2-(1H-Indol-3-yl)acetohydrazide (3). Further, The reaction scheme was designed into two pathways where, first pathway involved The reaction of 3 with substituted aromatic aldehydes (4a-o) in methanol with few drops of glacial acetic acid to generate 2-(1H-Indol-3-yl)-N'-[(un)substitutedphenylmethylidene]acetohydrazides (5a-o) and in second pathway 3 was reacted with acyl halides (6a-e) in basic aqueous medium (pH 9-10) to afford 2-(1H-Indol-3-yl)-N'-[(un)substitutedbenzoyl/2-thienylcarbonyl]acetohydrazides (7a-e). All The synthesized derivatives were characterized by IR, EI-MS and 1H-NMR spectral techniques and evaluated for their anti-bacterial potentials against Gram positive and Gram negative bacterial strains and it was found that compounds 7a-d exhibited antibacterial activities very close to standard Ciprofloxacin. The synthesized derivatives demonstrated moderate to weak anti-enzymatic potential against α-Glucosidase and Butyrylcholinesterase (BChE) where, compounds 7c and 5c exhibited comparatively better inhibition against these enzymes respectively. Compounds 7a, 7d and 7e showed excellent anti-enzymatic potentials against Lipoxygenase (LOX) and their IC50 values were much lower than the reference standard Baicalein. Enzyme inhibitory activities were also supported by computational docking results. Compounds 5c, 7a, 7b and 7c also showed low values of % hemolytic activity as well, showing that these molecules were not toxic, indicating that these molecules can be utilized as potential therapeutic agents against inflammatory ailments.
  9. Rizwan K, Zubair M, Rasool N, Ali S, Zahoor AF, Rana UA, et al.
    Chem Cent J, 2014;8:74.
    PMID: 25685184 DOI: 10.1186/s13065-014-0074-z
    It is seen that the regioselective functionalizations of halogenated heterocycles play an important role in the synthesis of several types of organic compounds. In this domain, the Suzuki-Miyaura reaction has emerged as a convenient way to build carbon-carbon bonds in synthesizing organic compounds. Some of the most important applications of these reactions can be seen in the synthesis of natural products, and in designing targeted pharmaceutical compounds. Herein, we present the regioselective synthesis of the novel series of 2-(bromomethyl)-5-aryl-thiophenes 3a-i, via Suzuki cross-coupling reactions of various aryl boronic acids with 2-bromo-5-(bromomethyl)thiophene (2).
  10. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H, et al.
    Arch Pharm (Weinheim), 2019 Mar;352(3):e1800278.
    PMID: 30624805 DOI: 10.1002/ardp.201800278
    Novel bi-heterocyclic benzamides were synthesized by sequentially converting 4-(1H-indol-3-yl)butanoic acid (1) into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3), and a nucleophilic 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4). In a parallel series of reactions, various electrophiles were synthesized by reacting substituted anilines (5a-k) with 4-(chloromethyl)benzoylchloride (6) to afford 4-(chloromethyl)-N-(substituted-phenyl)benzamides (7a-k). Finally, the nucleophilic substitution reaction of 4 was carried out with newly synthesized electrophiles, 7a-k, to acquire the targeted bi-heterocyclic benzamides, 8a-k. The structural confirmation of all the synthesized compounds was done by IR, 1 H NMR, 13 C NMR, EI-MS, and CHN analysis data. The inhibitory effects of these bi-heterocyclic benzamides (8a-k) were evaluated against alkaline phosphatase, and all these molecules were identified as potent inhibitors relative to the standard used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 8b inhibited alkaline phosphatase non-competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 1.15 μM. The computational study was in full agreement with the experimental records and these ligands exhibited good binding energy values. These molecules also exhibited mild cytotoxicity toward red blood cell membranes when analyzed through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds to render normal calcification of bones and teeth.
  11. Sagadevan S, Marlinda AR, Johan MR, Umar A, Fouad H, Alothman OY, et al.
    J Colloid Interface Sci, 2020 Jan 15;558:68-77.
    PMID: 31585223 DOI: 10.1016/j.jcis.2019.09.081
    We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.
  12. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Hassan M, et al.
    Bioorg Chem, 2019 05;86:459-472.
    PMID: 30772647 DOI: 10.1016/j.bioorg.2019.01.036
    The present research was designed for the selective synthesis of novel bi-heterocyclic acetamides, 9a-n, and their tyrosinase inhibition to overwhelm the problem of melanogenesis. The structures of newly synthesized compounds were confirmed by spectral techniques such as 1H NMR, 13C NMR, and EI-MS along with elemental analysis. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against tyrosinase and all these molecules were recognized as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which explored that compound, 9h, inhibited tyrosinase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0027 µM. The computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal/mol). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules can be pondered as nontoxic medicinal scaffolds for skin pigmentation and related disorders.
  13. Aziz-Ur-Rehman -, Khan SG, Bokhari TH, Anjum F, Akhter N, Rasool S, et al.
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):871-876.
    PMID: 32863264
    A novel series of 5-(3-Chlorophenyl)-2-((N-(substituted)-2-acetamoyl)sulfanyl)-1,3,4-oxadiazole derivatives was efficiently synthesized and screened for antibacterial, hemolytic and thrombolytic activities. The molecule 7c remained the best inhibitor of all selected bacterial strains and furthermore possessed very low toxicity, 8.52±0.31. Compound 7a 7b and 7f showed very good thrombolytic activity relative to Streptokinase employed as reference drug. In addition to low toxicity and moderately good thrombolytic activity, the synthesized compounds possessed excellent to moderate antibacterial activity, relative to ciprofloxacin. All compounds especially 7b and 7f can be consider for further clinical studies and might be helpful in synthesis of new drugs for treatment of cardiovascular diseases.
  14. Farooq U, Khan T, Shah SA, Hossain MS, Ali Y, Ullah R, et al.
    Life (Basel), 2021 Aug 12;11(8).
    PMID: 34440569 DOI: 10.3390/life11080825
    Neurodegenerative diseases (NDs) extend the global health burden. Consumption of alcohol as well as maternal exposure to ethanol can damage several neuronal functions and cause cognition and behavioral abnormalities. Ethanol induces oxidative stress that is linked to the development of NDs. Treatment options for NDs are yet scarce, and natural product-based treatments could facilitate ND management since plants possess plenty of bioactive metabolites, including flavonoids, which typically demonstrate antioxidant and anti-inflammatory properties. Hypericum oblongifolium is an important traditional medicinal plant used for hepatitis, gastric ulcer, external wounds, and other gastrointestinal disorders. However, it also possesses multiple bioactive compounds and antioxidant properties, but the evaluation of isolated pure compounds for neuroprotective efficacy has not been done yet. Therefore, in the current study, we aim to isolate and characterize the bioactive flavonoid folecitin and evaluate its neuroprotective activity against ethanol-induced oxidative-stress-mediated neurodegeneration in the hippocampus of postnatal day 7 (PND-7) rat pups. A single dose of ethanol (5 g/kg body weight) was intraperitoneally administered after the birth of rat pups on PND-7. This caused oxidative stress accompanied by the activation of phosphorylated-c-Jun N-terminal kinase (p-JNK), nod-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cysteine-aspartic acid protease-1 (caspase-1) proteins to form a complex called the NLRP3-inflammasome, which converts pro-interleukin 1 beta (IL-1B) to activate IL-1B and induce widespread neuroinflammation and neurodegeneration. In contrast, co-administration of folecitin (30 mg/kg body weight) reduced ethanol-induced oxidative stress, inhibited p-JNK, and deactivated the NLRP3-inflammasome complex. Furthermore, folecitin administration reduced neuroinflammatory and neurodegenerative protein markers, including decreased caspase-3, BCL-2-associated X protein (BAX), B cell CLL/lymphoma 2 (BCL-2), and poly (ADP-ribose) polymerase-1 (PARP-1) expression in the immature rat brain. These findings conclude that folecitin is a flavone compound, and it might be a novel, natural and safe agent to curb oxidative stress and its downstream harmful effects, including inflammasome activation, neuroinflammation, and neurodegeneration. Further evaluation in a dose-dependent manner would be worth it in order to find a suitable dose regimen for NDs.
  15. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
  16. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
  17. Raza H, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Abbas Q, et al.
    Bioorg Chem, 2020 01;94:103445.
    PMID: 31826809 DOI: 10.1016/j.bioorg.2019.103445
    In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.
  18. Nazir M, Abbasi MA, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2585-2597.
    PMID: 31969290
    In the study presented here, the nucleophilic substitution reaction of 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazol-2-ylhydrosulfide was carried out with different alkyl/aralkyl halides (5a-r) to form its different S-substituted derivatives (6a-r), as depicted in scheme 1. The structural confirmation of all the synthesized compounds was done by IR, 1H-NMR, 13C-NMR and CHN analysis data. Bacterial biofilm inhibitory activity of all the synthesized compounds was carried out against Bacillus subtilis and Escherichia coli. The anticancer activity of these molecules was ascertained using anti-proliferation (SRB) assay on HCT 116 Colon Cancer Cell lines while the cytotoxicity of these molecules was profiled for their haemolytic potential. From this investigation it was rational that most of the compounds exhibited suitable antibacterial and anticancer potential along with a temperate cytotoxicity.
  19. Najm AAK, Azfaralariff A, Dyari HRE, Othman BA, Shahid M, Khalili N, et al.
    Sci Rep, 2021 11 30;11(1):23182.
    PMID: 34848729 DOI: 10.1038/s41598-021-02007-6
    Previous study has shown the antimicrobial activities of mucus protein extracted from Anabas testudineus. In this study, we are interested in characterizing the anticancer activity of the A. testudineus antimicrobial peptides (AMPs). The mucus was extracted, fractioned, and subjected to antibacterial activity testing to confirm the fish's AMPs production. The cytotoxic activity of each fraction was also identified. Fraction 2 (F2), which shows toxicity against MCF7 and MDA-MB-231 were sent for peptide sequencing to identify the bioactive peptide. The two peptides were then synthetically produced and subjected to cytotoxic assay to prove their efficacy against cancer cell lines. The IC50 for AtMP1 against MCF7 and MDA-MB-231 were 8.25 ± 0.14 μg/ml and 9.35 ± 0.25 μg/ml respectively, while for AtMP2 it is 5.89 ± 0.14 μg/ml and 6.97 ± 0.24 μg/ml respectively. AtMP1 and AtMP2 treatment for 48 h induced breast cancer cell cycle arrest and apoptosis by upregulating the p53, which lead to upregulate pro-apoptotic BAX gene and downregulate the anti-apoptotic BCL-2 gene, consequently, trigger the activation of the caspase-3. This interaction was supported by docking analysis (QuickDBD, HPEPDOCK, and ZDOCK) and immunoprecipitation. This study provided new prospects in the development of highly effective and selective cancer therapeutics based on antimicrobial peptides.
  20. Azfaralariff A, Farahfaiqah F, Shahid M, Sanusi SA, Law D, Mohd Isa AR, et al.
    J Ethnopharmacol, 2022 Jan 30;283:114751.
    PMID: 34662662 DOI: 10.1016/j.jep.2021.114751
    ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (MP) herbs, locally known as Kacip Fatimah, are widely used traditionally to improve women's health. The herb is frequently used for gynecological issues such as menstrual problems, facilitating and quickening delivery, post-partum medication, treats flatulence and dysentery, and. MP extracts are thought to aid in the firming and toning of abdominal muscles, tighten breasts and vaginal muscles, and anti-dysmenorrhea. It also was used for the treatment of gonorrhea and hemorrhoids. As MP product has been produced commercially recently, more in-depth studies should be conducted. The presence of numerous active compounds in MP might provide a synergistic effect and potentially offer other health benefits than those already identified and known.

    AIM OF THE STUDY: This study aimed to use a computational target fishing approach to predict the possible therapeutic effect of Marantodes pumilum and evaluated their effectivity.

    MATERIALS AND METHODS: This study involves a computational approach to identify the potential targets by using target fishing. Several databases were used: PubChem database to obtain the chemical structure of interested compounds; Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) server and the SWISSADME web tool to identify and select the compounds having drug-likeness properties; PharmMapper was used to identify top ten target protein of the selected compounds and Online Mendelian Inheritance in Man (OMIM) was used to predict human genetic problems; the gene id of top-10 proteins was obtained from UniProtKB to be analyzed by using GeneMANIA server to check the genes' function and their co-expression; Gene Pathway established by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) of the selected targets were analyzed by using EnrichR server and confirmed by using DAVID (The Database for Annotation, Visualization and Integrated Discovery) version 6.8 and STRING database. All the interaction data was analyzed by Cytoscape version 3.7.2 software. The protein structure of most putative proteins was obtained from the RCSB protein data bank. Thedocking analysis was conducted using PyRx biological software v0.8 and illustrated by BIOVIA Discovery Studio Visualizer version 20.1.0. As a preliminary evaluation, a cell viability assay using Sulforhodamine B was conducted to evaluate the potential of the predicted therapeutic effect.

    RESULTS: It was found that four studied compounds are highly correlated with three proteins: EFGR, CDK2, and ESR1. These proteins are highly associated with cancer pathways, especially breast cancer and prostate cancer. Qualitatively, cell proliferation assay conducted shown that the extract has IC50 of 88.69 μg/ml against MCF-7 and 66.51 μg/ml against MDA-MB-231.

    CONCLUSIONS: Natural herbs are one of the most common forms of complementary and alternative medicine, and they play an important role in disease treatment. The results of this study show that in addition to being used traditionally to maintain women's health, the use of Marantodes pumilum indirectly has the potential to protect against the development of cancer cells, especially breast cancer. Therefore, further research is necessary to confirm the potential of this plant to be used in the development of anti-cancer drugs, especially for breast cancer.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links