Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Huda N, Ullah S, Wahab RA, Lani MN, Daud NHA, Shariff AHM, et al.
    BMC Res Notes, 2023 Sep 12;16(1):211.
    PMID: 37700361 DOI: 10.1186/s13104-023-06495-9
    OBJECTIVES: Pollen is a useful tool for identifying the provenance and complex ecosystems surrounding honey production in Malaysian forests. As native key pollinators in Malaysia, Apis dorsata and Heterotrigona itama forage on various plant/pollen species to collect honey. This study aims to generate a dataset that uncovers the presence of these plant/pollen species and their relative abundance in the honey of A. dorsata and H. itama. The information gathered from this study can be used to determine the geographical and botanical origin and authenticity of the honey produced by these two species.

    RESULTS: Sequence data were obtained for both A. dorsata and H. itama. The raw sequence data for A. dorsata was 5 Mb, which was assembled into 5 contigs with a size of 6,098,728 bp, an N50 of 15,534, and a GC average of 57.42. Similarly, the raw sequence data for H. itama was 6.3 Mb, which was assembled into 11 contigs with a size of 7,642,048 bp, an N50 of 17,180, and a GC average of 55.38. In the honey sample of A. dorsata, we identified five different plant/pollen species, with only one of the five species exhibiting a relative abundance of less than 1%. For H. itama, we identified seven different plant/pollen species, with only three of the species exhibiting a relative abundance of less than 1%. All of the identified plant species were native to Peninsular Malaysia, especially the East Coast area of Terengganu.

    DATA DESCRIPTION: Our data offers valuable insights into honey's geographical and botanical origin and authenticity. Metagenomic studies could help identify the plant species that honeybees forage and provide preliminary data for researchers studying the biological development of A. dorsata and H. itama. The identification of various flowers from the eDNA of honey that are known for their medicinal properties could aid in regional honey with accurate product origin labeling, which is crucial for guaranteeing product authenticity to consumers.

  2. Ullah S, Bustam MA, Nadeem M, Naz MY, Tan WL, Shariff AM
    ScientificWorldJournal, 2014;2014:940502.
    PMID: 25436237 DOI: 10.1155/2014/940502
    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10.
  3. Saqib S, Rafiq S, Muhammad N, Khan AL, Mukhtar A, Ullah S, et al.
    J Hazard Mater, 2021 06 05;411:125155.
    PMID: 33858108 DOI: 10.1016/j.jhazmat.2021.125155
    The synergetic effect of nitrogen-rich and CO2-philic filler and polymer in mixed matrix-based membranes (MMMs) can separate CO2 competently. The introduction of well-defined nanostructured porous fillers of pores close to the kinetic diameter of the gas molecule and polymer matrix compatibility is a challenge in improving the gas transportation characteristics of MMMs. This study deals with the preparation of porphyrin filler and the polysulfone (PSf) polymer MMMs. The fillers demonstrated uniform distribution, uniformity, and successful bond formation. MMMs demonstrated high thermal stability with a glass transition temperature in the range of 480-610 °C. The porphyrin filler exhibited microporous nature with the presence of π-π bonds and Lewis's basic functionalities between filler-polymer resulted in a highly CO2-philic structure. The pure and mixed gas permeabilities and selectivity were successfully improved and surpass the Robeson's upper bound curve's tradeoff. Additionally, the temperature influence on CO2 permeability revealed lower activation energies at higher temperatures leading to the gas transport facilitation. This can be granted consistency and long-term durability in polymer chains. These results highlight the unique properties of porphyrin fillers in CO2 separation mixed matrix membranes and offer new knowledge to increase comprehension of PSf performance under various contents or environments.
  4. Babar M, Mubashir M, Mukhtar A, Saqib S, Ullah S, Bustam MA, et al.
    Environ Pollut, 2021 Jun 15;279:116924.
    PMID: 33751951 DOI: 10.1016/j.envpol.2021.116924
    In this study, a sustainable NH2-MIL-101(Al) is synthesized and subjected to characterization for cryogenic CO2 adsorption, isotherms, and thermodynamic study. The morphology revealed a highly porous surface. The XRD showed that NH2-MIL-101(Al) was crystalline. The NH2-MIL-101(Al) decomposes at a temperature (>500 °C) indicating excellent thermal stability. The BET investigation revealed the specific surface area of 2530 m2/g and the pore volume of 1.32 cm3/g. The CO2 adsorption capacity was found to be 9.55 wt% to 2.31 wt% within the investigated temperature range. The isotherms revealed the availability of adsorption sites with favorable adsorption at lower temperatures indicating the thermodynamically controlled process. The thermodynamics showed that the process is non-spontaneous, endothermic, with fewer disorders, chemisorption. Finally, the breakthrough time of NH2-MIL-101(Al) is 31.25% more than spherical glass beads. The CO2 captured by the particles was 2.29 kg m-3. The CO2 capture using glass packing was 121% less than NH2-MIL-101(Al) under similar conditions of temperature and pressure.
  5. Ullah S, Mohd Nor NH, Daud H, Zainuddin N, Gandapur MSJ, Ali I, et al.
    Geospat Health, 2021 May 05;16(1).
    PMID: 33969966 DOI: 10.4081/gh.2021.961
    Coronavirus disease 2019 (COVID-19) is the current worldwide pandemic as declared by the World Health Organization (WHO) in March 2020. Being part of the ongoing global pandemic, Malaysia has recorded a total of 8639 COVID-19 cases and 121 deaths as of 30th June 2020. This study aims to detect spatial clusters of COVID-19 in Malaysia using the Spatial Scan Statistic (SaTScan™) to guide control authorities on prioritizing locations for targeted interventions. The spatial analyses were conducted on a monthly basis at the state-level from March to September 2020. The results show that the most likely cluster of COVID-19 occurred in West Malaysia repeatedly from March to June, covering three counties (two federal territories and one neighbouring state) and moved to East Malaysia in July covering two other counties. The most likely cluster shows a tendency of having moved from the western part to the eastern part of the country. These results provide information that can be used for the evidence- based interventions to control the spread of COVID-19 in Malaysia. A Correction has been published: https://doi.org/10.4081/gh.2023.1233
  6. Ullah S, Daud H, Dass SC, Fanaee-T H, Kausarian H, Khalil A
    PMID: 32098247 DOI: 10.3390/ijerph17041413
    The number of tuberculosis (TB) cases in Pakistan ranks fifth in the world. The National TB Control Program (NTP) has recently reported more than 462,920 TB patients in Khyber Pakhtunkhwa province, Pakistan from 2002 to 2017. This study aims to identify spatial and space-time clusters of TB cases in Khyber Pakhtunkhwa province Pakistan during 2015-2019 to design effective interventions. The spatial and space-time cluster analyses were conducted at the district-level based on the reported TB cases from January 2015 to April 2019 using space-time scan statistics (SaTScan). The most likely spatial and space-time clusters were detected in the northern rural part of the province. Additionally, two districts in the west were detected as the secondary space-time clusters. The most likely space-time cluster shows a tendency of spread toward the neighboring districts in the central part, and the most likely spatial cluster shows a tendency of spread toward the neighboring districts in the south. Most of the space-time clusters were detected at the start of the study period 2015-2016. The potential TB clusters in the remote rural part might be associated to the dry-cool climate and lack of access to the healthcare centers in the remote areas.
  7. Ullah H, Qureshi KS, Khan U, Zaffar M, Yang YJ, Rabat NE, et al.
    Chemosphere, 2021 Dec;285:131492.
    PMID: 34273691 DOI: 10.1016/j.chemosphere.2021.131492
    The restoration of mechanical properties is desired for creating the self-healing coatings with no corrosion capabilities. The encapsulation of epoxy resins is limited by various factors in urea and melamine formaldehyde microcapsules. An improved method was developed, where epoxy resin was encapsulated by individual wrapping of poly(melamine-formaldehyde) and poly(urea-formaldehyde) shell around emulsified epoxy droplets via oil-in-water emulsion polymerization method. The synthesized materials were characterized analytically. The curing of the epoxy was achieved by adding the [Ni/Co(2-MI)6].2NO3 as a latent hardener and iron acetylacetonate [Fe(acac)3] as a latent accelerator. Isothermal and non-isothermal differential scanning calorimetric analysis revealed lower curing temperature (Tonset = 116 °C) and lower activation energies (Ea ≈ 69-75 kJ/mol). The addition of microcapsules and complexes did not adversely alter the flexural strength and flexural modulus of the epoxy coatings. The adhesion strength of neat coating decreased from 6310.8 ± 31 to 4720.9 ± 60 kPa and percent healing increased from 50.83 to 67.45% in the presence of acetylacetonate complex at 10 wt% of microcapsules.
  8. Ullah S, Anwar F, Fayyaz Ur Rehman M, Qadir R, Safwan Akram M
    Chem Biodivers, 2023 Jul;20(7):e202300107.
    PMID: 37172296 DOI: 10.1002/cbdv.202300107
    This article presents an optimized ultrasound-assisted ethanolic extraction (UAEE) and characterization of selected high-value components from Gemlik olive fruit (GOF) harvested from Potohar region of Pakistan. Response surface methodology (RSM), involving central composite design (CCD), was applied to optimize the extraction variables i. e., temperature (25-65 °C), extraction time (15-45 min) and aqueous ethanol concentration (60-90 %) for optimal recovery of bioactives extract, total phenolic contents (TPC) and DPPH free radical scavengers. Under the optimized set of conditions such as 43 °C temperature, 32 min extraction time and 80 % aqueous ethanol, the best extract yield (218.82 mg/g), TPC (19.87 mg GAE/g) and DPPH scavenging activity (63.04 %) were recorded. A quadratic polynomial model was found to be reasonably fitted to the observed results for extract yield (p<0.0001 and R2 =0.9941), TPC (p<0.0001 and R2 =0.9891), and DPPH radical scavenging activity (p<0.0001 and R2 =0.9692). Potent phenolic compounds were identified by GC/MS in GOF extract and considerable amount of essential fatty acids were also detected. The current findings support the use of UAEE as an effective green route for optimized recovery of high-value components from GOF and hence its applications can be extended to functional food and nutra-pharmaceutical developments.
  9. Naz T, Nazir Y, Nosheen S, Ullah S, Halim H, Fazili ABA, et al.
    Biomed Res Int, 2020;2020:8890269.
    PMID: 33457420 DOI: 10.1155/2020/8890269
    Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of β-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance β-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of β-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior β-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the β-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 μg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum β-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced β-carotene production in CBS 277.49.
  10. Hayat A, Sohail M, Qadeer A, Taha TA, Hussain M, Ullah S, et al.
    Chem Rec, 2022 Dec;22(12):e202200097.
    PMID: 36103617 DOI: 10.1002/tcr.202200097
    Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.
  11. Ullah S, Khan SU, Khan A, Junaid M, Rafiq H, Htar TT, et al.
    Mol Divers, 2021 Jun 28.
    PMID: 34181147 DOI: 10.1007/s11030-021-10263-x
    Anterior Gradient 2 (AGR2) has recently been reported as a tumor biomarker in various cancers, i.e., breast, prostate and lung cancer. Predominantly, AGR2 exists as a homodimer via a dimerization domain (E60-K64); after it is self-dimerized, it helps FGF2 and VEGF to homo-dimerize and promotes the angiogenesis and the invasion of vascular endothelial cells and fibroblasts. Up till now, no small molecule has been discovered to inhibit the AGR2-AGR2 homodimer. Therefore, the present study was performed to prepare a validated 3D structure of AGR2 by homology modeling and discover a small molecule by screening the FDA-approved drugs library on AGR2 homodimer as a target protein. Thirteen different homology models of AGR2 were generated based on different templates which were narrowed down to 5 quality models sorted by their overall Z-scores. The top homology model based on PDB ID = 3PH9 was selected having the best Z-score and was further assessed by Verify-3D, ERRAT and RAMPAGE analysis. Structure-based virtual screening narrowed down the large library of FDA-approved drugs to ten potential AGR2-AGR2 homodimer inhibitors having FRED score lower than - 7.8 kcal/mol in which the top 5 drugs' binding stability was counter-validated by molecular dynamic simulation. To sum up, the present study prepared a validated 3D structure of AGR2 and, for the first time reported the discovery of 5 FDA-approved drugs to inhibit AGR2-AGR2 homodimer by using structure-based virtual screening. Moreover, the binding of the top 5 hits with AGR2 was also validated by molecular dynamic simulation. A validated 3D structure of Anterior Gradient 2 (AGR2) was prepared by homology modeling, which was used in virtual screening of FDA-approved drugs library for the discovery of prospective inhibitors of AGR2-AGR2 homodimer.
  12. Cromwell EA, Osborne JCP, Unnasch TR, Basáñez MG, Gass KM, Barbre KA, et al.
    PLoS Negl Trop Dis, 2021 07;15(7):e0008824.
    PMID: 34319976 DOI: 10.1371/journal.pntd.0008824
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0·71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50·2% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify.
  13. Huyop F, Ullah S, Abdul Wahab R, Huda N, Sujana IGA, Saloko S, et al.
    PLoS One, 2024;19(4):e0301213.
    PMID: 38578814 DOI: 10.1371/journal.pone.0301213
    Limited honey production worldwide leads to higher market prices, thus making it prone to adulteration. Therefore, regular physicochemical analysis is imperative for ensuring authenticity and safety. This study describes the physicochemical and antioxidant properties of Apis cerana honey sourced from the islands of Lombok and Bali, showing their unique regional traits. A comparative analysis was conducted on honey samples from Lombok and Bali as well as honey variety from Malaysia. Moisture content was found slightly above 20% in raw honey samples from Lombok and Bali, adhering to the national standard (SNI 8664:2018) of not exceeding 22%. Both honey types displayed pH values within the acceptable range (3.40-6.10), ensuring favorable conditions for long-term storage. However, Lombok honey exhibited higher free acidity (78.5±2.14 meq/kg) than Bali honey (76.0±1.14 meq/kg), surpassing Codex Alimentarius recommendations (≤50 meq/kg). The ash content, reflective of inorganic mineral composition, was notably lower in Lombok (0.21±0.02 g/100) and Bali honey (0.14±0.01 g/100) compared to Tualang honey (1.3±0.02 g/100). Electric conductivity, indicative of mineral content, revealed Lombok and Bali honey with lower but comparable values than Tualang honey. Hydroxymethylfurfural (HMF) concentrations in Lombok (14.4±0.11 mg/kg) and Bali (17.6±0.25 mg/kg) were slightly elevated compared to Tualang honey (6.4±0.11 mg/kg), suggesting potential processing-related changes. Sugar analysis revealed Lombok honey with the highest sucrose content (2.39±0.01g/100g) and Bali honey with the highest total sugar content (75.21±0.11 g/100g). Both honeys exhibited lower glucose than fructose content, aligning with Codex Alimentarius guidelines. The phenolic content, flavonoids, and antioxidant activity were significantly higher in Lombok and Bali honey compared to Tualang honey, suggesting potential health benefits. Further analysis by LC-MS/MS-QTOF targeted analysis identified various flavonoids/flavanols and polyphenolic/phenolic acid compounds in Lombok and Bali honey. The study marks the importance of characterizing the unique composition of honey from different regions, ensuring quality and authenticity in the honey industry.
  14. Ullah S, Khan MF, Shah SAA, Farooq M, Khan MA, Mamat MB
    Eur Phys J Plus, 2020;135(10):839.
    PMID: 33101826 DOI: 10.1140/epjp/s13360-020-00855-1
    Vector-host infectious diseases remain a challenging issue and cause millions of deaths each year globally. In such outbreaks, many countries especially developing or underdevelopment faces a situation where the number of infected individuals is getting larger and the medical facilities are limited. In this paper, we construct an epidemic model to explore the transmission dynamics of vector-borne diseases with nonlinear saturated incidence rate and saturated treatment function. This type of incidence rate, as well as the saturated treatment function, is also known as the Holling type II form and describes the effect of delayed treatment. Initially, we formulate a mathematical model and then present the basic analysis of the model including the positivity and boundedness of the solution. The threshold quantity R 0 is presented and the stability analysis of the system is carried out for the model equilibria. The global stability results are shown using the Lyapunov function of Goh-Voltera type. The existence of backward bifurcation is discussed using the central manifold theory. Further, the global sensitivity analysis of the model is carried out using the Latin Hypercube sampling and the partial rank correlation coefficient techniques. Moreover, an optimal control problem is formulated and the necessary optimality conditions are investigated in order to eradicate the disease in a community. Four strategies are presented by choosing different set of controls combination for the disease minimization. Finally, the numerical simulations of each strategy are depicted to demonstrate the importance of suggesting control interventions on the disease dynamics and eradication.
  15. Talab F, Alam A, Zainab, Ullah S, Elhenawy AA, Shah SAA, et al.
    J Biomol Struct Dyn, 2024 Feb 22.
    PMID: 38385366 DOI: 10.1080/07391102.2024.2319677
    This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.Communicated by Ramaswamy H. Sarma.
  16. Waqas MY, Lisi H, Yang P, Ullah S, Zhang L, Zhang Q, et al.
    J Exp Zool A Ecol Genet Physiol, 2015 Nov;323(9):655-65.
    PMID: 26350585 DOI: 10.1002/jez.1957
    The oviduct is the location of fertilization and sperm storage. We examined the ultrastructure of the oviduct epithelium and its glandular secretions in the isthmus, uterus and vagina of Chinese soft-shelled turtle Pelodiscus sinensis using light and transmission electron microscopy. The epithelium in these segments is lined with ciliated, secretory and other cells; the first two cell types span the entire epithelium, with secretory cells being predominant. The ciliated cells are characterized by the presence of a secretory vacuole that releases apocrine secretions into the lumen, whereas the secretory cells contain typical biphasic granules with both dark and light aspects. The third type of cells observed have wider proximal portion, abundant mitochondria, vacuoles, and narrow nuclei. The storage of spermatozoa is restricted to the isthmus, uterus, and vagina. In addition, the gland cells show prominent features, including the presence of granules of different shapes, sizes, and electron densities. The synthesis of these granules is described for the first time in this study. Mitochondria appear to play an important role in the formation of dense granules, the rough endoplasmic reticulum and microfilaments may also play a role in the maturation of these dense granules. After completing the maturation process, these granules are released into the lumen of the gland cells.
  17. Khan SU, Khan F, Ullah S, YoungmoonLee, Sami ulQudoos, Lee B
    Heliyon, 2023 Jun;9(6):e17334.
    PMID: 37416636 DOI: 10.1016/j.heliyon.2023.e17334
    For the past 25 years, medical imaging has been extensively used for clinical diagnosis. The main difficulties in medicine are accurate disease recognition and improved therapy. Using a single imaging modality to diagnose disease is challenging for clinical personnel. In this paper, a novel structural and spectral feature enhancement method in NSST Domain for multimodal medical image fusion (MMIF) is proposed. Initially, the proposed method uses the Intensity, Hue, Saturation (IHS) method to generate two pairs of images. The input images are then decomposed using the Non-Subsampled Shearlet Transform (NSST) method to obtain low frequency and high frequency sub-bands. Next, a proposed Structural Information (SI) fusion strategy is employed to Low Frequency Sub-bands (LFS's). It will enhance the structural (texture, background) information. Then, Principal Component Analysis (PCA) is employed as a fusion rule to High Frequency Sub-bands (HFS's) to obtain the pixel level information. Finally, the fused final image is obtained by employing inverse NSST and IHS. The proposed algorithm was validated using different modalities containing 120 image pairs. The qualitative and quantitative results demonstrated that the algorithm proposed in this research work outperformed numerous state-of-the-art MMIF approaches.
  18. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
  19. Qasim M, Ayoub M, Aqsha A, Ghazali NA, Ullah S, Ando Y, et al.
    ACS Omega, 2022 Nov 15;7(45):40789-40798.
    PMID: 36406530 DOI: 10.1021/acsomega.2c02993
    CO2 levels in the atmosphere are growing as a result of the burning of fossil fuels to meet energy demands. The introduction of chemical looping combustion (CLC) as an alternative to traditional combustion by transporting oxygen emphasizes the need to develop greener and more economical energy systems. Metal oxide, also defined as an oxygen carrier (OC), transports oxygen from the air to the fuel. Several attempts are being made to develop an OC with a reasonable material cost for superior fuel conversion and high oxygen transport capacity (OTC). This study aims to synthesize a potential OC using the wet impregnation method for the CLC process. Thermogravimetric analysis (TGA) was used to determine the cyclic redox properties using 5% CH4/N2 and air as reducing and oxidizing gases, respectively. The 10CuPA-based OC retained a high OTC of about 0.0267 mg O2/mg of OC for 10 cycles that was higher than 10CuA-based OC. Furthermore, the oxygen transfer rate for 10CuPA-based OC was relatively higher compared to 10CuA-based OC over 10 cycles. In comparison to 10CuA-based OC, the 10CuPA-based OC presented a steady X-ray diffraction (XRD) pattern after 10 redox cycles, implying that the phase was stably restored due to praseodymium-modified γ alumina support.
  20. Inayat A, Rocha-Meneses L, Ayoub M, Ullah S, Abdullah AZ, Naqvi SR, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72224-72235.
    PMID: 37170050 DOI: 10.1007/s11356-023-27371-w
    This study investigated the effect of different Co3O4-based catalysts on the catalytic decomposition of nitrous oxide (N2O) and on nitric oxide (NO) conversion. The experiments were carried out using various reaction temperatures, alkaline solutions, pH, mixing conditions, aging times, space velocities, impregnation loads, and compounds. The results showed that Co3O4 catalysts prepared by precipitation methods have the highest catalytic activity and N2O conversion, even at low reaction temperatures, while the commercial nano and powder forms of Co3O4 (CS) have the lowest performance. The catalysts become inactive at temperatures below 400 °C, and their activity is strongly influenced by the mixing temperature. Samples without stirring during the aging process have higher catalytic activity than those with stirring, even at low reaction temperatures (200-300 °C). The catalytic activity of Co3O4 PM1 decreases with low W/F values and low reaction temperatures. Additionally, the catalyst's performance tends to increase with the reduction process. The study suggests that cobalt-oxide-based catalysts are effective in N2O catalytic decomposition and NO conversion. The findings may be useful in the design and optimization of catalytic systems for N2O and NO control. The results obtained provide important insights into the development of highly efficient, low-cost, and sustainable catalysts for environmental protection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links