Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Jasni N, Wee CL, Ismail N, Yaacob NS, Othman N
    Sci Rep, 2024 Feb 17;14(1):3968.
    PMID: 38368470 DOI: 10.1038/s41598-024-54279-3
    Horseshoe crabs are among the most studied invertebrates due to their unique, innate immune system and biological processes. The metabolomics study was conducted on lipopolysaccharide (LPS)-stimulated and non-stimulated hemocytes isolated from the Malaysian Tachypleus gigas and Carcinoscorpius rotundicauda. LC-TOF-MS, multivariate analyses, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) were included in this study to profile the metabolites. A total of 37 metabolites were identified to be differentially abundant and were selected based on VIP > 1. However, of the 37 putative metabolites, only 23 were found to be significant with ANOVA at p 
  2. Wee CL, Azemi AK, Mokhtar SS, Yahaya S, Yaacob NS, Rasool AHG
    Microvasc Res, 2023 Nov;150:104574.
    PMID: 37390963 DOI: 10.1016/j.mvr.2023.104574
    Low vitamin D (vitD) levels have been reported to be a risk factor for diabetes-related cardiovascular complications. This study examined the effects of vitD deficiency on oxidative stress (OS), inflammation, and levels of the vasoconstrictor angiotensin II (Ang II) in the microvascular tissue of type 2 diabetic patients. Patients were categorized into (i) vitD non-deficient diabetics (DNP, n = 10) and (ii) vitD-deficient diabetics (DDP, n = 10), based on their serum 25(OH)D levels. Subcutaneous fat tissues with intact blood vessels were collected during lower limb surgical procedures. The blood vessel were isolated; measurements of the antioxidant enzyme superoxide dismutase (SOD) activity, OS marker malondialdehyde (MDA), Ang II, and the inflammatory marker, TNF-α of the microvascular tissues were determined. Elevated MDA levels and reduced SOD activity, with higher levels of TNF-α and Ang II were observed in the microvascular tissues of DDP compared to DNP. VitD deficiency did not associate with glycemic parameters (fasting blood glucose and glycated hemoglobin) levels. In conclusion, vitD deficiency was correlated with higher microvascular tissue OS, inflammation, and Ang II levels in type 2 diabetic patients. This may contribute to early vasculopathy that occurs in diabetic patients, thus, may contribute to the planning of therapeutic strategies to delay or prevent cardiovascular complications.
  3. Yahya MM, Ismail MP, Ramanathan S, Kadir MN, Azhar A, Ibrahim NBC, et al.
    Biomedicines, 2023 Feb 11;11(2).
    PMID: 36831061 DOI: 10.3390/biomedicines11020525
    Breast carcinoma is the most common cancer of women in Malaysia. The most common sites of metastasis are the lung, liver, bone and brain. A 45-year-old lady was diagnosed with left invasive breast carcinoma stage IV (T4cN1M1) with axillary lymph nodes and lung metastasis. She was noted to have a cervical mass through imaging, and biopsy showed CIN III. Post chemotherapy, the patient underwent left simple mastectomy with examination under anaesthesia of the cervix, cystoscopy and staging. The cervical histopathological examination (HPE) showed squamous cell carcinoma, and clinical staging was 2A. The breast tissue HPE showed invasive carcinoma with triple receptors positivity. The patient was given tamoxifen and put on concurrent chemoradiotherapy (CCRT) for the cervical cancer. The management of each pathology of this patient involved a multi-disciplinary team that included surgeons, oncologists, gynaecologists, pathologists and radiologists. Due to the complexity of the case with two concurrent cancers, the gene expression profiles may help predict the patient's clinical outcome.
  4. Ahmad MF, Abdullah H, Hassan MN, Jamaludin MI, Sivam A, Komatsu K, et al.
    Int J Mol Sci, 2023 Jan 03;24(1).
    PMID: 36614337 DOI: 10.3390/ijms24010872
    Soil ecosystems are home to a diverse range of microorganisms, but they are only partially understood because no single-cell sequencing or whole-community sequencing provides a complete picture of these complex communities. Using one of such metagenomics approaches, we succeeded in monitoring the microbial diversity and stress-response gene in the soil samples. This study aims to test whether known differences in taxonomic diversity and composition are reflected in functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of geographically dispersed soils from two distinct pristine forests. The study was commenced by sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were assessed by exploring the changes in specific functional gene abundances to elucidate physiological constraints acting on different soil systems and identify variance in functional pathways relevant to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15% in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of 3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa, respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98% in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and 96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant stress-related genes assigned to various stress-response pathways, many of which did not show any difference among samples from both sites. Our findings indicate that the structure and functional potential of the microbial community will be altered by future environmental potential as the first glimpse of both the taxonomic and functional composition of soil microbial communities.
  5. Sarmiento ME, Chin KL, Lau NS, Ismail N, Norazmi MN, Acosta A, et al.
    Curr Issues Mol Biol, 2022 Nov 25;44(12):5866-5878.
    PMID: 36547060 DOI: 10.3390/cimb44120399
    Carcinoscorpius rotundicauda (C. rotundicauda) is one of the four species of horseshoe crabs (HSCs). The HSC hemocytes store defense molecules that are released upon encountering invading pathogens. The HSCs rely on this innate immunity to continue its existence as a living fossil for more than 480 million years. To gain insight into the innate mechanisms involved, transcriptomic analysis was performed on isolated C. rotundicauda hemocytes challenged with lipopolysaccharides (LPS), the main components of the outer cell membrane of gram-negative bacteria. RNA-sequencing with Illumina HiSeq platform resulted in 232,628,086 and 245,448,176 raw reads corresponding to 190,326,253 and 201,180,020 high-quality mappable reads from control and LPS-stimulated hemocytes, respectively. Following LPS-stimulation, 79 genes were significantly upregulated and 265 genes were downregulated. The differentially expressed genes (DEGs) were related to multiple immune functional categories and pathways such as those of the cytoskeleton, Toll and Imd, apoptosis, MAP kinase (MAPK), inositol phosphate metabolism, phagosome, leucocyte endothelial migration, and gram-negative bacterial infection, among others. This study provides important information about the mechanisms of response to LPS, which is relevant for the understanding the HSCs' immune response.
  6. Sharudin NA, Murtadha Noor Din AH, Azahar II, Mohd Azlan M, Yaacob NS, Sarmiento ME, et al.
    Asian Pac J Cancer Prev, 2022 Sep 01;23(9):2953-2964.
    PMID: 36172657 DOI: 10.31557/APJCP.2022.23.9.2953
    BACKGROUND: Detectable neonatal Nav1.5 (nNav1.5) expression in tumour breast tissue positive for lymph node metastasis and triple-negative subtype serves as a valid tumour-associated antigen to target and prevent breast cancer invasion and metastasis. Therapeutic antibodies against tumour antigens have become the predominant class of new drugs in cancer therapy because of their fewer adverse effects and high specificity.

    OBJECTIVE: This study was designed to investigate the therapeutic and anti-metastatic potential of the two newly obtained anti-nNav1.5 antibodies, polyclonal anti-nNav1.5 (pAb-nNav1.5) and monoclonal anti-nNav1.5 (mAb-nNav1.5), on breast cancer invasion and metastasis.

    METHODS: MDA-MB-231 and 4T1 cells were used as in vitro models to study the effect of pAb-nNav1.5 (59.2 µg/ml) and mAb-nNav1.5 (10 µg/ml) (24 hours treatment) on cell invasion. 4T1-induced mammary tumours in BALB/c female mice were used as an in vivo model to study the effect of a single dose of intravenous pAb-nNav1.5 (1 mg/ml) and mAb-nNav1.5 (1 mg/ml) on the occurrence of metastasis. Real-time PCR and immunofluorescence staining were conducted to assess the effect of antibody treatment on nNav1.5 mRNA and protein expression, respectively. The animals' body weight, organs, lesions, and tumour mass were also measured and compared.

    RESULTS: pAb-nNav1.5 and mAb-nNav1.5 treatments effectively suppressed the invasion of MDA-MB-231 and 4T1 cells in the 3D spheroid invasion assay. Both antibodies significantly reduced nNav1.5 gene and protein expression in these cell lines. Treatment with pAb-nNav1.5 and mAb-nNav1.5 successfully reduced mammary tumour tissue size and mass and prevented lesions in vital organs of the mammary tumour animal model whilst maintaining the animal's healthy weight. mRNA expression of nNav1.5 in mammary tumour tissues was only reduced by mAb-nNav1.5.

    CONCLUSION: Overall, this work verifies the uniqueness of targeting nNav1.5 in breast cancer invasion and metastasis prevention, but more importantly, humanised versions of mAb-nNav1.5 may be valuable passive immunotherapeutic agents to target nNav1.5 in breast cancer.

  7. Yong YF, Liew MWO, Yaacob NS
    PMID: 35146636 DOI: 10.1007/s13318-022-00754-z
    BACKGROUND AND OBJECTIVE: Strobilanthes crispus Blume sub-fraction (F3) has been reported to be cytotoxic against cancer cells and to cause murine mammary tumor regression. Potential utilization of F3 as an adjuvant in breast cancer treatment to alleviate chemotherapeutic drug resistance is currently hampered by potential cytochrome P450 (CYP)-mediated herb-drug interactions (HDIs). The current study assessed the inhibitory potency of F3 towards five CYP enzymes involved in tamoxifen metabolism.

    METHODS: Potential CYP inhibition by F3 was first determined using fluorescence assays, using known CYP inhibitors as reference. To further ascertain the inhibitory potency and mode of inhibition, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis of specific metabolites of a CYP probe substrate was conducted.

    RESULTS: The half-maximal inhibitory concentration (IC50) values indicate that F3 exhibited relatively weak inhibition on CYP2B6, CYP2C19, CYP2D6, and CYP3A4. Highest susceptibility to inhibition by F3 was observed for CYP2C9, where the IC50 value from fluorescence-based assay was 35-fold higher than control. Further analysis by HPLC-MS/MS revealed relatively weak mixed-type inhibition of F3 on CYP2C9, as indicated by IC50 and inhibition constant (KI) values. The risk of clinically significant CYP2C9 inhibition by F3 was then predicted based on the attained KI value and the presumed amount of F3 absorbed from S. crispus leaves following consumption. The calculated maximum plasma concentration to inhibition constant Cmax/KI) ratio suggests that F3 consumption could potentially result in clinically significant drug interactions with medications metabolized by CYP2C9.

    CONCLUSION: Taken together, the results revealed a low probability of inhibition by F3 on CYP enzymes involved in tamoxifen metabolism. However, further in vivo investigation is necessary for potential F3 interaction with CYP2C9. The utility of a preliminary in vitro approach in the assessment of potential HDI was demonstrated in this study.

  8. Abu Bakar MA, Samat N, Yaacob NS
    Geospat Health, 2021 10 19;16(2).
    PMID: 34672180 DOI: 10.4081/gh.2021.987
    Cerebral palsy (CP) is one of the most common causes of disability in childhood, leading to functional limitations and poor nutritional status. Families with CP children face challenges in providing proper care. Thus, accessibility of CP patients to health facilities is important to ensure that they can maintain regular visits to health facilities for proper treatment and care. The current study aimed to map the spatial distribution of CP in Johor, Malaysia and measure the accessibility of CP patients to nearby hospitals, health clinics and community-based rehabilitation centres. The study is based on CP cases in 2017 obtained from the Department of Social Welfare, Malaysia and analysed using the average nearest neighbour, buffer analysis and Kernel Density Estimation. Results indicate that there is generally good access to health care services for many of the CP children in Johor, but for 25% of those living more than 10 km away from the health clinics or community-based rehabilitation centres, regular visits can be a problem. This information should be used for targeted intervention and planning for health care strategies. Furthermore, information on hospital accessibility of CP children would allow for planning of proper and regular treatment for these patients. The study has shown that it is possible to improve the understanding of the distribution of CP cases by integrating spatial analysis using geographical information systems without relying on official information about the density of populations.
  9. Sarmiento ME, Chin KL, Lau NS, Aziah I, Ismail N, Norazmi MN, et al.
    Fish Shellfish Immunol, 2021 Oct;117:148-156.
    PMID: 34358702 DOI: 10.1016/j.fsi.2021.08.001
    Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or 
  10. Sarmiento ME, Chin KL, Lau NS, Aziah I, Norazmi MN, Acosta A, et al.
    Mitochondrial DNA B Resour, 2021 May 23;6(6):1710-1714.
    PMID: 34104748 DOI: 10.1080/23802359.2021.1930213
    This paper reports on the complete mitochondrial (mt) genome of a horseshoe crab, Tachypleus gigas (T. gigas), in Kuala Kemaman, Terengganu, Malaysia. Whole-genome sequencing of hemocyte DNA was performed with Illumina HiSeq system and the generated reads were de novo assembled with ABySS 2.1.5 and reassembled using mitoZ against Carcinoscorpius rotundicauda and Limulus polyphemus, resulting in a contig of 15 Kb. Phylogenetic analysis of the assembled mt genome suggests that the Tachypleus gigas is closely related to Tachypleus tridentatus than to Carcinoscorpius rotundicauda.
  11. Muhammad SNH, Yaacob NS, Safuwan NAM, Fauzi AN
    PMID: 33906591 DOI: 10.2174/1871520621666210427104804
    BACKGROUND: Survival and progression of cancer cells are highly dependent on aerobic glycolysis. Strobilanthes crispus has been shown to have promising anticancer effects on breast cancer cells. The involvement of the glycolysis pathway in producing these effects is unconfirmed, thus further investigation is required to elucidate this phenomenon.

    OBJECTIVE: This study aims to determine the effect of S. crispus active fraction (F3) and its bioactive components on glycolysis in triple-negative breast cancer cells (MDA-MB-231).

    METHODS: This study utilizes F3, lutein, β-sitosterol, and stigmasterol to be administered in MDA-MB-231 cells for measurement of antiglycolytic activities through cell poliferation, glucose uptake, and lactate concentration assays. Cell proliferation was assessed by MTT assay of MDA-MB-231 cells after treatment with F3 and its bioactive components lutein, β-sitosterol, and stigmasterol. The IC50 value in each compound was determined by MTT assay to be used in subsequent assays. The determination of glucose uptake activity and lactate concentration were quantified using fluorescence spectrophotometry.

    RESULTS: Antiproliferative activities were observed for F3 and its bioactive components, with IC50 values of 100 µg/mL (F3), 20 µM (lutein), 25 µM (β-sitosterol), and 90 μM (stigmasterol) in MDA-MB-231 cells at 48 h. The percentage of glucose uptake and lactate concentration in MDA-MB-231 cells treated with F3, lutein, or β sitosterol were significantly lower than those observed in the untreated cells in a time-dependent manner. However, treatment with stigmasterol decreased the concentration of lactate without affecting the glucose uptake in MDA-MB-231 cells.

    CONCLUSION: The antiglycolytic activities of F3 on MDA-MB-231 cells are attributed to its bioactive components.

  12. Wan Mohd Zamri WMI, Sjahrir F, Yaacob NS, Dzulkafli NF, Ahmad MF, Abdullah H, et al.
    Molecules, 2021 Apr 23;26(9).
    PMID: 33922872 DOI: 10.3390/molecules26092480
    The assessment of water-extractable organic matter using an autoclave can provide useful information on physical, chemical, and biological changes within the soil. The present study used virgin forest soils from Chini Forest Reserve, Langkawi Island, and Kenyir Forest Reserve (Malaysia), extracted using different extraction methods. The dissolved organic carbon (DOC), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and ammonium-nitrate content were higher in the autoclave treatments, up to 3.0, 1.3, 1.2, and 1.4 times more than by natural extraction (extracted for 24 h at room temperature). Overall, the highest extractable DOC, TDN, TDP, ammonium and nitrate could be seen under autoclaved conditions 121 °C 2×, up to 146.74 mg C/L, 8.97 mg N/L, 0.23 mg P/L, 5.43 mg N mg/L and 3.47 N mg/L, respectively. The soil extracts became slightly acidic with a higher temperature and longer duration. Similar trends were observed in the humic and nonhumic substances, where different types of soil extract treatments influenced the concentrations of the fractions. Different soil extraction methods can provide further details, thus widening the application of soil extracts, especially in microbes.
  13. Baraya YS, Yankuzo HM, Wong KK, Yaacob NS
    J Ethnopharmacol, 2021 Mar 01;267:113522.
    PMID: 33127562 DOI: 10.1016/j.jep.2020.113522
    ETHNOPHARMACOLOGICAL RELEVANCE: Locally known as 'pecah batu', 'bayam karang', 'keci beling' or 'batu jin', the Malaysian medicinal herb, Strobilanthes crispus (S. crispus), is traditionally used by the local communities as alternative or adjuvant remedy for cancer and other ailments and to boost the immune system. S. crispus has demonstrated multiple anticancer therapeutic potential in vitro and in vivo. A pharmacologically active fraction of S. crispus has been identified and termed as F3. Major constituents profiled in F3 include lutein and β-sitosterol.

    AIM OF THE STUDY: In this study, the effects of F3, lutein and β-sitosterol on tumor development and metastasis were investigated in 4T1-induced mouse mammary carcinoma model.

    MATERIALS AND METHODS: Tumor-bearing mice were fed with F3 (100 mg/kg/day), lutein (50 mg/kg/day) and β-sitosterol (50 mg/kg/day) for 30 days (n = 5 each group). Tumor physical growth parameters, animal body weight and development of secondary tumors were investigated. The safety profile of F3 was assessed using hematological and histomorphological changes on the major organs in normal control mice (NM).

    RESULTS: Our findings revealed significant reduction of physical tumor growth parameters in all tumor-bearing mice treated with F3 (TM-F3), lutein (TM-L) or β-sitosterol (TM-β) as compared with the untreated group (TM). Statistically significant reduction in body weight was observed in TM compared to the NM or treated (TM-F3, TM-L and TM-β) groups. Histomorphological examination of tissue sections from the F3-treated group showed normal features of the vital organs (i.e., liver, kidneys, lungs and spleen) which were similar to those of NM. Administration of F3 to NM mice (NM-F3) did not cause significant changes in full blood count values.

    CONCLUSION: F3 significantly reduced the total tumor burden and prevented secondary tumor development in metastatic breast cancer without significant toxicities in 4T1-induced mouse mammary carcinoma model. The current study provides further support for therapeutic development of F3 with further pharmacokinetics studies.

  14. Ying K, Rostenberghe HV, Kuan G, Mohd Yusoff MHA, Ali SH, Yaacob NS
    PMID: 33670850 DOI: 10.3390/ijerph18052351
    Caregiving for children with cerebral palsy (CP) has proved to negatively impact on the physical and psychological well-being of their primary caregivers. The aim of the current study was to examine the overall impact of caregiving for children with CP on the primary caregivers' health-related quality of life (HRQOL) and family functioning, and to identify potential factors associated with primary caregivers' HRQOL and family functioning. The cross-sectional study involved a total of 159 primary caregivers of children with CP with a mean age of 42.8 ± 8.4 years. Demographic data and information on the physical and leisure activities of the primary caregivers were collected, and their quality of life (QOL) was measured based on the self-reported Pediatric Quality of Life Inventory Family Impact Module (PedsQL FIM). Primary caregivers in the current study have shown good HRQOL and family functioning, with scores of 82.4 and 85.3 out of 100, respectively. Through multiple linear regression analyses, the mother's level of education, family monthly income, sleeping problems in children with CP, and the existence of children with other types of disability have been identified as factors contributing to HRQOL and family functioning. The findings help set out the course for stakeholders to establish action to enhance the QOL of primary caregivers.
  15. Daud SM, Yaacob NS, Fauzi AN
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):59-65.
    PMID: 33576213 DOI: 10.31557/APJCP.2021.22.S1.59
    OBJECTIVE: The persistent activation of aerobic glycolysis in cancer cells results in accumulation of lactate and other metabolic intermediates that contribute to tumorigenesis. Increased glycolysis is frequently dysregulated in triple-negative breast cancer (TNBC), which promotes tumor growth and immune escape. This study was conducted to investigate the effect of 2-methoxy-1, 4-naphthoquinone (MNQ), compound extracted from Impatiens balsamina on glycolytic activities in human breast adenocarcinoma, MDA-MB-231 cells.

    METHODS: Initially, MTT proliferation assay was used to test the cell viability with various doses of MNQ (5-100 µM). As the half maximal inhibitory concentration (IC50) was obtained, glucose uptake and lactate assays of the cells were tested with IC50 dose of MNQ. The treated cells were also subjected to gene and protein analysis of glycolysis-related molecules (GLUT1 and Akt).

    RESULTS: The results showed that MNQ decreased the percentage of MDA-MB-231 cell viability in a dose-dependent manner with the IC50 value of 29 µM. The percentage of glucose uptake into the cells and lactate production decreased significantly after treatment with MNQ as compared to untreated cells. Remarkably, the expressions of GLUT1 and Akt molecules decreased in MNQ-treated cells, suggesting that the inhibition of glycolysis by MNQ is GLUT1-dependent and possibly mediated by the Akt signaling pathway.

    CONCLUSION: Our findings indicate the ability of MNQ to inhibit the glycolytic activities as well as glycolysis-related molecules in MDA-MB-231 cells, suggesting the potential of MNQ to be further developed as an effective anticancer agent against TNBC cells.

  16. Yaacob NS, Ahmad MF, Kawasaki N, Maniyam MN, Abdullah H, Hashim EF, et al.
    Molecules, 2021 Jan 27;26(3).
    PMID: 33513787 DOI: 10.3390/molecules26030653
    Soil extracts are useful nutrients to enhance the growth of microalgae. Therefore, the present study attempts for the use of virgin soils from Peninsular Malaysia as growth enhancer. Soils collected from Raja Musa Forest Reserve (RMFR) and Ayer Hitam Forest Reserve (AHFR) were treated using different extraction methods. The total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and dissolved organic carbon (DOC) concentrations in the autoclave methods were relatively higher than natural extraction with up to 132.0 mg N/L, 10.7 mg P/L, and 2629 mg C/L, respectively for RMFR. The results of TDN, TDP, and DOC suggested that the best extraction methods are autoclaved at 121 °C twice with increasing 87%, 84%, and 95%, respectively. Chlorella vulgaris TRG 4C dominated the growth at 121 °C twice extraction method in the RMRF and AHRF samples, with increasing 54.3% and 14%, respectively. The specific growth rate (µ) of both microalgae were relatively higher, 0.23 d-1 in the Ayer Hitam Soil. This extract served well as a microalgal growth promoter, reducing the cost and the needs for synthetic medium. Mass production of microalgae as aquatic feed will be attempted eventually. The high recovery rate of nutrients has a huge potential to serve as a growth promoter for microalgae.
  17. Wong KK, Hassan R, Yaacob NS
    Front Oncol, 2021;11:624742.
    PMID: 33718188 DOI: 10.3389/fonc.2021.624742
    Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory effects against cancer cells. This includes stimulation of anti-tumor immunity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens (CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity. Moreover, decitabine and guadecitabine induce the expression of immune checkpoint molecules in AML cells. In this review, the accumulating knowledge on the immunopotentiating properties of decitabine and guadecitabine in AML and MDS patients are presented and discussed. In summary, combination of decitabine or guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover, decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen receptor-engineered T cells antileukemic activities against AML. Furthermore, combination of either HMAs with immune checkpoint blockade (ICB) therapy may circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS patients are currently underway, highlighting the promising efficacy of HMAs and immunotherapy synergy against these malignancies.
  18. Nallappan D, Fauzi AN, Krishna BS, Kumar BP, Reddy AVK, Syed T, et al.
    Biomed Res Int, 2021;2021:5125681.
    PMID: 34631882 DOI: 10.1155/2021/5125681
    Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.
  19. Arumugam K, Ahmad MF, Yaacob NS, Ikram WM, Maniyam MN, Abdullah H, et al.
    Heliyon, 2020 Jul;6(7):e04556.
    PMID: 32775725 DOI: 10.1016/j.heliyon.2020.e04556
    Natural growth-promoting nutrients extracted from aquaculture sludge waste can be used to maximise microalgal growth. This study identified the influence of aquaculture sludge extract (SE) on four microalgae species. Conway or Bold's Basal Media (BBM) was supplemented with SE collected from a Sabak Bernam shrimp pond (SB) and Kota Puteri fish pond (KP), and tested using a novel microplate-incubation technique. Five different autoclave extraction treatment parameters were assessed for both collected SE, i.e., 1-h at 105 °C, 2-h at 105 °C, 1-h at 121 °C, 2-h at 121 °C, and 24-h at room temperature (natural extraction). Microalgae culture in the microplates containing control (media) and enriched (media + SE) samples were incubated for nine days, at 25 °C with the light intensity of 33.75 μmol photons m-2 s-1 at 12-h light/dark cycle. The total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP) in KP SE were 44.0-82.0 mg L-1 and 0.96-8.60 mg L-1. TDN (8.0%-515.0%) and TDP (105%-186 %) were relatively higher in KP SE compared to SB SE. The growth of microalgae species Nannochloropsis ocenica showed significant differences (p < 0.05) between the five extraction treatments from SB and the control. However, Chlorella vulgaris, Neochloris conjuncta, and Nephroclamys subsolitaria showed no significant differences (p > 0.05) in SB SE. N. ocenica, C. vulgaris, and N. conjuncta showed significant differences (p < 0.05) between five extraction treatments from KP and the control while N. subsolitaria showed no significant difference (p > 0.05). The specific growth rate (SGR) in the exponential phase of all microalgae species were relatively higher in SB SE compared to KP SE. While the organic matter content of KP SE was relatively higher, there were no significant differences in microalgae growth compared to SB SE. Nonetheless, modified SE did influence microalgae growth compared to the control. This study shows that modified SE could be used as enrichment media for microalgae cultivation.
  20. Yong YF, Tan SC, Liew MWO, Yaacob NS
    PMID: 32416571 DOI: 10.1016/j.jchromb.2020.122148
    Screening for potential drug-drug interaction (DDI) or herb-drug interaction (HDI) using in vitro cytochrome P450 inhibition (IVCI) assays requires robust analytical methods with high sensitivity and reproducibility. Utilization of liquid chromatography-mass spectrometry (LC-MS) for analyte quantification is often hampered by the presence of non-volatile IVCI sample buffer constituents that often results in ion suppression. In this study, to enable screening of drug interactions involving tamoxifen (TAM) metabolism using IVCI-LC-MS/MS, a liquid-liquid extraction (LLE) method was developed and optimized for sample clean-up. Utilization of chloroform as extraction solvent and adjustment of sample pH to 11 was found to result in satisfactory recovery (>70%) and low ion suppression (<19%). A LC-MS/MS method was subsequently developed and validated for simultaneous quantification of major TAM metabolites, such as N-desmethyltamoxifen (NDT), endoxifen (EDF) and 4-hydroxytamoxifen (HTF) to enable IVCI sample analysis. Satisfactory separation of E-/Z-isomers of endoxifen with peak resolution (Rs) of 1.9 was achieved. Accuracy and precision of the method was verified within the linear range of 0-50 ng/mL for NDT, 0-25 ng/mL for HTF and 0-25 ng/mL for EDF (E/Z isomers). Inhibitory potency (IC50, Ki and mode of inhibition) of known CYP inhibitors and Strobilanthes crispus extract was then evaluated using the validated method. In summary, the results demonstrated applicability of the developed LLE and validated LC-MS/MS method for in vitro screening of DDI and HDI involving TAM metabolism.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links