Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Soo JS, Ng CH, Tan SH, Malik RA, Teh YC, Tan BS, et al.
    Apoptosis, 2015 Oct;20(10):1373-87.
    PMID: 26276035 DOI: 10.1007/s10495-015-1158-5
    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.
    Matched MeSH terms: Adenosine Triphosphate/metabolism*
  2. Periayah MH, Halim AS, Yaacob NS, Saad AZ, Hussein AR, Rashid AH, et al.
    Biomed Res Int, 2014;2014:653149.
    PMID: 25247182 DOI: 10.1155/2014/653149
    Platelet membrane receptor glycoprotein IIb/IIIa (gpiibiiia) is a receptor detected on platelets. Adenosine diphosphate (ADP) activates gpiibiiia and P2Y12, causing platelet aggregation and thrombus stabilization during blood loss. Chitosan biomaterials were found to promote surface induced hemostasis and were capable of activating blood coagulation cascades by enhancing platelet aggregation. Our current findings show that the activation of the gpiibiiia complex and the major ADP receptor P2Y12 is required for platelet aggregation to reach hemostasis following the adherence of various concentrations of chitosan biomaterials [7% N,O-carboxymethylchitosan (NO-CMC) with 0.45 mL collagen, 8% NO-CMC, oligochitosan (O-C), and oligochitosan 53 (O-C 53)]. We studied gpiibiiia and P2Y12 through flow cytometric analysis and western blotting techniques. The highest expression of gpiibiiia was observed with Lyostypt (74.3 ± 7.82%), followed by O-C (65.5 ± 7.17%). Lyostypt and O-C resulted in gpiibiiia expression increases of 29.2% and 13.9%, respectively, compared with blood alone. Western blot analysis revealed that only O-C 53 upregulated the expression of P2Y12 (1.12 ± 0.03-fold) compared with blood alone. Our findings suggest that the regulation of gpiibiiia and P2Y12 levels could be clinically useful to activate platelets to reach hemostasis. Further, we show that the novel oligochitosan is able to induce the increased expression of gpiibiiia and P2Y12, thus accelerating platelet aggregation in vitro.
    Matched MeSH terms: Adenosine Triphosphate/metabolism*
  3. Lee NT, Ong LK, Gyawali P, Nassir CMNCM, Mustapha M, Nandurkar HH, et al.
    Biomolecules, 2021 07 06;11(7).
    PMID: 34356618 DOI: 10.3390/biom11070994
    The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood-brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
    Matched MeSH terms: Adenosine Triphosphate/metabolism*
  4. Dongworth RK, Mukherjee UA, Hall AR, Astin R, Ong SB, Yao Z, et al.
    Cell Death Dis, 2014 Feb 27;5:e1082.
    PMID: 24577080 DOI: 10.1038/cddis.2014.41
    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia-reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia-reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1(L166P) and DJ-1(Cys106A) mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.
    Matched MeSH terms: Adenosine Triphosphate/metabolism
  5. Kakkar S, Kumar S, Lim SM, Ramasamy K, Mani V, Shah SAA, et al.
    Chem Cent J, 2018 Dec 04;12(1):130.
    PMID: 30515643 DOI: 10.1186/s13065-018-0499-x
    BACKGROUND: In view of wide range of biological activities of oxazole, a new series of oxazole analogues was synthesized and its chemical structures were confirmed by spectral data (Proton/Carbon-NMR, IR, MS etc.). The synthesized oxazole derivatives were screened for their antimicrobial and antiproliferative activities.

    RESULTS AND DISCUSSION: The antimicrobial activity was performed against selected fungal and bacterial strains using tube dilution method. The antiproliferative potential was evaluated against human colorectal carcinoma (HCT116) and oestrogen- positive human breast carcinoma (MCF7) cancer cell lines using Sulforhodamine B assay and, results were compared to standard drugs, 5-fluorouracil and tamoxifen, respectively.

    CONCLUSION: The performed antimicrobial activity indicated that compounds 3, 5, 6, 8 and 14 showed promising activity against selected microbial species. Antiproliferative screening found compound 14 to be the most potent compound against HCT116 (IC50 = 71.8 µM), whereas Compound 6 was the most potent against MCF7 (IC50 = 74.1 µM). Further, the molecular docking study has been carried to find out the interaction between active oxazole compounds with CDK8 (HCT116) and ER-α (MCF7) proteins indicated that compound 14 and 6 showed good dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.

    Matched MeSH terms: Adenosine Triphosphate
  6. Muhamad N, Simcock DC, Pedley KC, Simpson HV, Brown S
    PMID: 21296180 DOI: 10.1016/j.cbpb.2011.01.008
    Like other nematodes, both L(3) and adult Teladosagia circumcincta secrete or excrete NH(3)/NH(4)(+), but the reactions involved in the production are unclear. Glutamate dehydrogenase is a significant source NH(3)/NH(4)(+) in some species, but previous reports indicate that the enzyme is absent from L(3)Haemonchus contortus. We show that glutamate dehydrogenase was active in both L(3) and adult T. circumcincta. The apparent K(m)s of the L(3) enzyme differed from those of the adult enzyme, the most significant of these being the increase in the K(m) for NH(4)(+) from 18mM in L(3) to 49mM in adults. The apparent V(max) of the oxidative deamination reaction was greater than that of the reductive reaction in L(3), but this was reversed in adults. The activity of the oxidative reaction of the L(3) enzyme was not affected by adenine nucleotides, but that of the reductive reaction was stimulated significantly by either ADP or ATP. The L(3) enzyme was more active with NAD(+) than it was with NADP(+), although the activities supported by NADH and NADPH were similar at saturating concentrations. While the activity of the oxidative reaction was sufficient to account for the NH(3)/NH(4)(+) efflux we have previously reported, the reductive amination reaction was likely to be more active.
    Matched MeSH terms: Adenosine Triphosphate/metabolism
  7. Wolfe AD, Hahn FE
    Naturwissenschaften, 1975 Feb;62(2):99.
    PMID: 1683
    Matched MeSH terms: Adenosine Triphosphate/metabolism
  8. Xu J, Lin X, Cheng KK, Zhong H, Liu M, Zhang G, et al.
    PMID: 31186665 DOI: 10.1155/2019/6947471
    Electroacupuncture and moxibustion are traditional Chinese medicine practices that exert therapeutic effects through stimulation of specific meridian acupoints. However, the biological basis of the therapies has been difficult to establish; thus the current practices still rely on ancient TCM references. Here, we used a rat model to study perturbations in cortex, liver, and stomach metabolome and plasma hormones following electroacupuncture or moxibustion treatment on either stomach meridian or gallbladder meridian acupoints. All treatment groups, regardless of meridian and mode of treatment, showed perturbation in cortex metabolome and increased phenylalanine, tyrosine, and branched-chain amino acids in liver. In addition, electroacupuncture was found to increase ATP in cortex, creatine, and dimethylglycine in stomach and GABA in liver. On the other hand, moxibustion increased plasma enkephalin concentration, as well as betaine and fumarate concentrations in stomach. Furthermore, we had observed meridian-specific changes including increased N-acetyl-aspartate in liver and 3-hydroxybutyrate in stomach for gallbladder meridian stimulation and increased noradrenaline concentration in blood plasma following stimulation on stomach meridian. In summary, the current findings may provide insight into the metabolic basis of electroacupuncture and moxibustion, which may contribute towards new application of acupoint stimulation.
    Matched MeSH terms: Adenosine Triphosphate
  9. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP, et al.
    Exp Gerontol, 2018 Oct 01;111:53-64.
    PMID: 29981398 DOI: 10.1016/j.exger.2018.07.002
    Decrease in multiple functions occurs in the brain with aging, all of which can contribute to age-related cognitive and locomotor impairments. Brain atrophy specifically in hippocampus, medial prefrontal cortex (mPFC), and striatum, can contribute to this age-associated decline in function. Our recent metabolomics analysis showed age-related changes in these brain regions. To further understand the aging processes, analysis using a proteomics approach was carried out. This study was conducted to identify proteome profiles in the hippocampus, mPFC, and striatum of 14-, 18-, 23-, and 27-month-old rats. Proteomics analysis using ultrahigh performance liquid chromatography coupled with Q Exactive HF Orbitrap mass spectrometry identified 1074 proteins in the hippocampus, 871 proteins in the mPFC, and 241 proteins in the striatum. Of these proteins, 97 in the hippocampus, 25 in mPFC, and 5 in striatum were differentially expressed with age. The altered proteins were classified into three ontologies (cellular component, molecular function, and biological process) containing 44, 38, and 35 functional groups in the hippocampus, mPFC, and striatum, respectively. Most of these altered proteins participate in oxidative phosphorylation (e.g. cytochrome c oxidase and ATP synthase), glutathione metabolism (e.g. peroxiredoxins), or calcium signaling pathway (e.g. protein S100B and calmodulin). The most prominent changes were observed in the oldest animals. These results suggest that alterations in oxidative phosphorylation, glutathione metabolism, and calcium signaling pathway are involved in cognitive and locomotor impairments in aging.
    Matched MeSH terms: Adenosine Triphosphate
  10. Ali Khan MS, Misbah, Ahmed N, Arifuddin M, Rehman A, Ling MP
    Food Chem Toxicol, 2018 Jun 05.
    PMID: 29883785 DOI: 10.1016/j.fct.2018.06.007
    Flowers of Tabernaemontana divaricata (L.) R. Br., (Apocynaceae) are used in traditional medicine for analgesic property. The present study was performed to isolate the active principles and investigate the mechanisms involved in the anti-nociception caused by T. divaricata flower methanolic extract (TDFME). The extract in the doses of 125, 250 and 500 mg/kg, p.o was subjected to various assays in acetic acid induced abdominal writhing and formalin induced paw licking test models. Naloxone, L-Arginine, Glibenclamide and Glutamate were used as inducers while Morphine, L-NAME, Methylene blue and Aspirin served as standard drugs. The phytochemical analysis led to the isolation of three indole alkaloids namely Voacangine, Catharanthine and O-acetyl Vallesamine. The anti-nociception produced by TDFME was attenuated significantly (p< 0.001) by the intra-peritoneal pretreatment of naloxone, L-Arginine and glibenclamide. The nociception produced by glutamate was inhibited by TDFME. TDFME also enhanced the antinociceptive activity of L-NAME when given in combination. However TDFME co-administration did not produce significant results with methylene blue indicating lack of cGMP involvement. These results indicate that TDFME produces anti-nociception action mediated by opioid, nitric oxide, K+-ATP and glutamate mechanisms and the effect is largely related to the indole alkaloids.
    Matched MeSH terms: Adenosine Triphosphate
  11. Tan SM, Lee SM, Dykes GA
    Foodborne Pathog Dis, 2015 Mar;12(3):183-9.
    PMID: 25562466 DOI: 10.1089/fpd.2014.1853
    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.
    Matched MeSH terms: Adenosine Triphosphate/chemistry
  12. Shajib MS, Rashid RB, Ming LC, Islam S, Sarker MMR, Nahar L, et al.
    Front Pharmacol, 2018;9:85.
    PMID: 29515437 DOI: 10.3389/fphar.2018.00085
    Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties.Nicotiana plumbaginifolia, an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone (1), 3,3',4',5',5,6,7,8-octamethoxyflavone (exoticin) (2), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3), and 3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4), isolated and identified fromN. plumbaginifolia. Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds1,3, and4(12.5-25 mg/kg b.w.) exhibited dose-dependent and significant (p< 0.01) antinociceptive activity in the acetic-acid, formalin, carrageenan, and thermal (hot plate)-induced pain models. The association of ATP-sensitive K+channel and opioid systems in their antinociceptive effect was obvious from the antagonist effect of glibenclamide and naloxone, respectively. These findings suggested central and peripheral antinociceptive activities of the compounds. Compound1,3, and4(12.5 mg/kg b.w.) demonstrated significant (p< 0.05) anxiolytic-like activity in the elevated plus-maze test, while the involvement of GABAAreceptor in the action of compound3and4was evident from the reversal effects of flumazenil. In addition, compounds1and4(12.5-25 mg/kg b.w) exhibited anxiolytic activity without altering the locomotor responses. The present study suggested that the polymethoxyflavones (1-4) fromN. Plumbaginifoliacould be considered as suitable candidates for the development of analgesic and anxiolytic agents.
    Matched MeSH terms: Adenosine Triphosphate
  13. Agarwal T, Annamalai N, Maiti TK, Arsad H
    Gene, 2016 Apr 10;580(1):17-25.
    PMID: 26748242 DOI: 10.1016/j.gene.2015.12.066
    DAPK3 belongs to family of DAPK (death-associated protein kinases) and is involved in the regulation of progression of the cell cycle, cell proliferation, apoptosis and autophagy. It is considered as a tumor suppressor kinase, suggesting the loss of its function in case of certain specific mutations. The T112M, D161N and P216S mutations in DAPK3 have been observed in cancer patients. These DAPK3 mutants have been associated with very low kinase activity, which results in the cellular progression towards cancer. However, a clear understanding of the structural and biophysical variations that occur in DAPK3 with these mutations, resulting in the decreased kinase activity has yet not been deciphered. We performed a molecular dynamic simulation study to investigate such structural variations. Our results revealed that mutations caused a significant structural variation in DAPK3, majorly concentrated in the flexible loops that form part of the ATP binding pocket. Interestingly, D161N and P216S mutations collapsed the ATP binding pocket through flexible loops invasion, hindering ATP binding which resulted in very low kinase activity. On the contrary, T112M mutant DAPK3 reduces ATP binding potential through outward distortion of flexible loops. In addition, the mutant lacked characteristic features of the active protein kinase including proper interaction between HR/FD and DFG motifs, well structured hydrophobic spine and Lys42-Glu64 salt bridge interaction. These observations could possibly explain the underlying mechanism associated with the loss of kinase activity with T112M, D161N and P216S mutation in DAPK3.
    Matched MeSH terms: Adenosine Triphosphate
  14. Jau MH, Yew SP, Toh PS, Chong AS, Chu WL, Phang SM, et al.
    Int J Biol Macromol, 2005 Aug;36(3):144-51.
    PMID: 16005060
    Three strains of Spirulina platensis isolated from different locations showed capability of synthesizing poly(3-hydroxybutyrate) [P(3HB)] under nitrogen-starved conditions with a maximum accumulation of up to 10 wt.% of the cell dry weight (CDW) under mixotrophic culture conditions. Intracellular degradation (mobilization) of P(3HB) granules by S. platensis was initiated by the restoration of nitrogen source. This mobilization process was affected by both illumination and culture pH. The mobilization of P(3HB) was better under illumination (80% degradation) than in dark conditions (40% degradation) over a period of 4 days. Alkaline conditions (pH 10-11) were optimal for both biosynthesis and mobilization of P(3HB) at which 90% of the accumulated P(3HB) was mobilized. Transmission electron microscopy (TEM) revealed that the mobilization of P(3HB) involved changes in granule quantity and morphology. The P(3HB) granules became irregular in shape and the boundary region was less defined. In contrast to bacteria, in S. platensis the intracellular mobilization of P(3HB) seems to be faster than the biosynthesis process. This is because in cyanobacteria chlorosis delays the P(3HB) accumulation process.
    Matched MeSH terms: Adenosine Triphosphate/chemistry
  15. Jubaidi FF, Zainalabidin S, Mariappan V, Budin SB
    Int J Mol Sci, 2020 Aug 22;21(17).
    PMID: 32842567 DOI: 10.3390/ijms21176043
    As the powerhouse of the cells, mitochondria play a very important role in ensuring that cells continue to function. Mitochondrial dysfunction is one of the main factors contributing to the development of cardiomyopathy in diabetes mellitus. In early development of diabetic cardiomyopathy (DCM), patients present with myocardial fibrosis, dysfunctional remodeling and diastolic dysfunction, which later develop into systolic dysfunction and eventually heart failure. Cardiac mitochondrial dysfunction has been implicated in the development and progression of DCM. Thus, it is important to develop novel therapeutics in order to prevent the progression of DCM, especially by targeting mitochondrial dysfunction. To date, a number of studies have reported the potential of phenolic acids in exerting the cardioprotective effect by combating mitochondrial dysfunction, implicating its potential to be adopted in DCM therapies. Therefore, the aim of this review is to provide a concise overview of mitochondrial dysfunction in the development of DCM and the potential role of phenolic acids in combating cardiac mitochondrial dysfunction. Such information can be used for future development of phenolic acids as means of treating DCM by alleviating the cardiac mitochondrial dysfunction.
    Matched MeSH terms: Adenosine Triphosphate/metabolism
  16. Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J
    Int J Mol Sci, 2019 Jan 27;20(3).
    PMID: 30691193 DOI: 10.3390/ijms20030526
    Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
    Matched MeSH terms: Adenosine Triphosphate/metabolism
  17. Yokoyama Y, Ohtaki A, Jantan I, Yohda M, Nakamoto H
    J. Biochem., 2015 Mar;157(3):161-8.
    PMID: 25294885 DOI: 10.1093/jb/mvu061
    Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.
    Matched MeSH terms: Adenosine Triphosphate/chemistry
  18. Ravera S, Ferrando S, Agas D, De Angelis N, Raffetto M, Sabbieti MG, et al.
    J Biophotonics, 2019 09;12(9):e201900101.
    PMID: 31033186 DOI: 10.1002/jbio.201900101
    Photobiomodulation (PBM) is a non-plant-cell manipulation through a transfer of energy by means of light sources at the non-ablative or thermal intensity. Authors showed that cytochrome-c-oxidase (complex IV) is the specific chromophore's target of PBM at the red (600-700 nm) and NIR (760-900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in the β-oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2 . Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe-S proteins and Cu-centers of respiratory complexes and with the water molecules could be supposed.
    Matched MeSH terms: Adenosine Triphosphate/chemistry
  19. Mahmod M, Pal N, Rayner J, Holloway C, Raman B, Dass S, et al.
    J Cardiovasc Magn Reson, 2018 12 24;20(1):88.
    PMID: 30580760 DOI: 10.1186/s12968-018-0511-6
    BACKGROUND: Heart failure (HF) is characterized by altered myocardial substrate metabolism which can lead to myocardial triglyceride accumulation (steatosis) and lipotoxicity. However its role in mild HF with preserved ejection fraction (HFpEF) is uncertain. We measured myocardial triglyceride content (MTG) in HFpEF and assessed its relationships with diastolic function and exercise capacity.

    METHODS: Twenty seven HFpEF (clinical features of HF, left ventricular EF >50%, evidence of mild diastolic dysfunction and evidence of exercise limitation as assessed by cardiopulmonary exercise test) and 14 controls underwent 1H-cardiovascular magnetic resonance spectroscopy (1H-CMRS) to measure MTG (lipid/water, %), 31P-CMRS to measure myocardial energetics (phosphocreatine-to-adenosine triphosphate - PCr/ATP) and feature-tracking cardiovascular magnetic resonance (CMR) imaging for diastolic strain rate.

    RESULTS: When compared to controls, HFpEF had 2.3 fold higher in MTG (1.45 ± 0.25% vs. 0.64 ± 0.16%, p = 0.009) and reduced PCr/ATP (1.60 ± 0.09 vs. 2.00 ± 0.10, p = 0.005). HFpEF had significantly reduced diastolic strain rate and maximal oxygen consumption (VO2 max), which both correlated significantly with elevated MTG and reduced PCr/ATP. On multivariate analyses, MTG was independently associated with diastolic strain rate while diastolic strain rate was independently associated with VO2 max.

    CONCLUSIONS: Myocardial steatosis is pronounced in mild HFpEF, and is independently associated with impaired diastolic strain rate which is itself related to exercise capacity. Steatosis may adversely affect exercise capacity by indirect effect occurring via impairment in diastolic function. As such, myocardial triglyceride may become a potential therapeutic target to treat the increasing number of patients with HFpEF.

    Matched MeSH terms: Adenosine Triphosphate/metabolism
  20. Ching CL, Kamaruddin A, Rajangan CS
    J Food Prot, 2021 Jun 01;84(6):973-983.
    PMID: 33232455 DOI: 10.4315/JFP-20-294
    ABSTRACT: Environmental hygiene monitoring in the food processing environment has become important in current food safety programs to ensure safe food production. However, conventional monitoring of surface hygiene based on visual inspection and microbial counts is slow, tedious, and thus unable to support the current risk-based management system. Therefore, this study was conducted to assess the performance of a real-time total adenylate assay that detected ATP+ADP+AMP (A3) for food contact surface hygiene in 13 food processing plants and two commercial kitchens in Malaysia. The A3 value was compared with the microbial count (aerobic plate count [APC]) on food contact surfaces. Receiver-operating characteristic (ROC) analysis was performed to assess the reliability of the data and to determine the optimal threshold value for hygiene indication of food contact surfaces. Overall, the A3 value demonstrated a weak positive relationship with APC. However, the A3 value significantly correlated with APC for food processing environments associated with raw meat and raw food ingredients such as fruit that harbor a high microbial load. ROC analysis suggested an optimal threshold for the A3 value of 500 relative light units to balance the sensitivity and specificity at 0.728 and 0.719, respectively. The A3 assay as a hygiene indicator for food contact surfaces had an efficiency of 72.1%, indicating its reliability as a general hygiene indicator.
    Matched MeSH terms: Adenosine Triphosphate/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links