Affiliations 

  • 1 Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
  • 2 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
  • 3 Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
  • 4 Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India. naru2000us@yahoo.com
Chem Cent J, 2018 Dec 04;12(1):130.
PMID: 30515643 DOI: 10.1186/s13065-018-0499-x

Abstract

BACKGROUND: In view of wide range of biological activities of oxazole, a new series of oxazole analogues was synthesized and its chemical structures were confirmed by spectral data (Proton/Carbon-NMR, IR, MS etc.). The synthesized oxazole derivatives were screened for their antimicrobial and antiproliferative activities.

RESULTS AND DISCUSSION: The antimicrobial activity was performed against selected fungal and bacterial strains using tube dilution method. The antiproliferative potential was evaluated against human colorectal carcinoma (HCT116) and oestrogen- positive human breast carcinoma (MCF7) cancer cell lines using Sulforhodamine B assay and, results were compared to standard drugs, 5-fluorouracil and tamoxifen, respectively.

CONCLUSION: The performed antimicrobial activity indicated that compounds 3, 5, 6, 8 and 14 showed promising activity against selected microbial species. Antiproliferative screening found compound 14 to be the most potent compound against HCT116 (IC50 = 71.8 µM), whereas Compound 6 was the most potent against MCF7 (IC50 = 74.1 µM). Further, the molecular docking study has been carried to find out the interaction between active oxazole compounds with CDK8 (HCT116) and ER-α (MCF7) proteins indicated that compound 14 and 6 showed good dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.