Displaying publications 1 - 20 of 601 in total

  1. Matched MeSH terms: Anti-Infective Agents
  2. Hussein-Al-Ali SH, Abudoleh SM, Hussein MZ, Bullo S, Palanisamy A
    IET Nanobiotechnol, 2021 Feb;15(1):79-89.
    PMID: 34694731 DOI: 10.1049/nbt2.12009
    In this study, ellagic acid (ELA), a skin anticancer drug, is capped on the surface(s) of functionalised graphene oxide (GO) nano-sheets through electrostatic and π-π staking interactions. The prepared ELA-GO nanocomposite have been thoroughly characterised by using eight techniques: Fourier-transform infrared spectroscopy (FTIR), zeta potential, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, atomic force microscopy (AFM) topographic imaging, transmission electron microscopy (TEM), and surface morphology via scanning electron microscopy (SEM). Furthermore, ELA drug loading and release behaviours from ELA-GO nanocomposite were studied. The ELA-GO nanocomposite has a uniform size distribution averaging 88 nm and high drug loading capacity of 30 wt.%. The in vitro drug release behaviour of ELA from the nanocomposite was investigated by UV-Vis spectrometry at a wavelength of λmax 257 nm. The data confirmed prolonged ELA release over 5000 min at physiological pH (7.4). Finally, the IC50 of this ELA-GO nanocomposite was found to be 6.16 µg/ml against B16 cell line; ELA and GO did not show any cytotoxic effects up to 50 µg/ml on the same cell lines.
    Matched MeSH terms: Anti-Infective Agents*
  3. Kamaruddin MSH, Chong GH, Mohd Daud N, Putra NR, Md Salleh L, Suleiman N
    Food Res Int, 2023 Feb;164:112283.
    PMID: 36737895 DOI: 10.1016/j.foodres.2022.112283
    Zingiber officinale Roscoe is an excellent source of bioactive compounds, mainly gingerols and shogaols compounds, that associated with various bioactivities including antioxidant, anticancer, anti-inflammatory, antimicrobial, and antibiofilm. Zingiber officinale Roscoe found its application in the food, pharmaceutical, and cosmeceutical industries. The demand for a high quality of ginger oleoresin extracts based on the contents of gingerols and shogaols compounds for a health-benefit has dramatically increased. Various extraction techniques, including the conventional and advanced extraction techniques for gingerols and shogaols have been reported based on the literature data from 2012 to 2022. The present review examines the functional composition and bioactivities of Zingiber officinale Roscoe and the advanced green extraction technologies. Some variations in the quantity and quality of gingerols and shogaols compounds are because of the extraction method employed. This review provides a depth discussion of the various green advanced extraction technologies and the influences of process variables on the performance of the extraction process. Lower temperature with a short exposure time such as ultrasound-assisted and enzyme-assisted extraction, will lead to high quality of extracts with high content of 6-gingerol. High thermal processing, such as microwave-assisted and pressurized liquid extraction, will produce higher 6-shogaol. Meanwhile, supercritical fluid extraction promotes high quality and the safety of extracts by using non-toxic CO2. In addition, challenges and future prospects of the extraction of ginger oleoresin have been identified and discussed. The emerging green extraction methods and technologies show promising results with less energy input and higher quality extracts than conventional extraction methods.
    Matched MeSH terms: Anti-Infective Agents*
  4. Mohd Rasid NH, Abdul Halid N, Song AA, Sabri S, Saari N, Hasan H
    Mol Biotechnol, 2023 Jun;65(6):861-870.
    PMID: 36273370 DOI: 10.1007/s12033-022-00584-z
    There is an increasing demand for natural food preservatives due to consumers' concern on the negative effects of chemical preservatives in food products. Nisin (bacteriocin) is an effective food biopreservative that has been approved globally. However, its low yield proves to be a limiting factor and must be addressed to meet the increasingly high demand from the food industry. The present work thus investigated the effects of individual and combined fermentation factors on Lactococcus lactis ATCC 11454 growth and nisin activity using the one-factor-at-a-time (OFAT) method. The level of each factor that gave the highest nisin production was then selected and combined to further improve its activity. The best combined conditions for highest cell growth and nisin activity were 30 °C, pH 6.0, and mild agitation with the addition of 1.0% w/v glucose, 1.0% w/v skim milk, and 0.5% v/v Tween 20. This increased nisin production by 22.7% as compared to control (basic condition). The present work provided critical information on the relationship between fermentation conditions, growth, and nisin activity of L. lactis ATCC 11454 that could be explored to understand the potential and limitation of the strain. This fermentation strategy can also serve as a benchmark to further enhance the production of bacteriocin or other biopreservative compounds.
    Matched MeSH terms: Anti-Infective Agents*
  5. Zhao QQ, Chen MY, He RL, Zhang ZF, Ashraf MA
    Saudi J Biol Sci, 2016 Jan;23(1):S137-41.
    PMID: 26858558 DOI: 10.1016/j.sjbs.2015.08.010
    This review summarizes the research on timber construction materials used in bridge construction. It focuses on the application of antiseptic treatments and the use of timber engineering materials in decks and bridges. This review also provides an overview on the future research and prospects of engineered timber materials.
    Matched MeSH terms: Anti-Infective Agents, Local
  6. Kamarudin Y, Skeats MK, Ireland AJ, Barbour ME
    Am J Orthod Dentofacial Orthop, 2020 Nov;158(5):e73-e82.
    PMID: 33008710 DOI: 10.1016/j.ajodo.2020.07.027
    INTRODUCTION: White spot lesions are a common side effect of orthodontic treatment. This laboratory study aimed to explore the suitability of chlorhexidine hexametaphosphate (CHX-HMP) as a coating for orthodontic elastomeric ligatures to provide sustained chlorhexidine (CHX) release.

    METHODS: Dissolution kinetics of CHX-HMP were firstly explored using spectroscopy and a colorimetric phosphate assay. Elastomeric ligatures were categorized into 3 groups-acetone-conditioned, ethanol-conditioned, and as received-and were then immersed in 5 mM CHX-HMP suspension or 5 mM chlorhexidine digluconate solution and rinsed. CHX release was measured over 8 weeks, and the effects of conditioning and immersion on elastomeric force and extension at rupture and surface topography were investigated.

    RESULTS: CHX-HMP exhibited a gradual equilibration that had not reached equilibrium within 8 weeks, releasing soluble CHX and a mixture of polyphosphate and orthophosphate. CHX digluconate-treated ligatures showed no CHX release, whereas CHX-HMP-treated ligatures showed varying degrees of release. As received, CHX-HMP-treated ligatures showed a modest release of CHX up to 7 days. Acetone conditioning did not enhance CHX-HMP uptake or subsequent CHX release and caused a deterioration in mechanical properties. Ethanol conditioning enhanced CHX-HMP uptake (6×) and led to a sustained CHX release over 8 weeks without affecting mechanical properties.

    CONCLUSIONS: Within the inherent limitations of this in-vitro study, CHX-HMP led to a sustained release of CHX from orthodontic elastomeric ligatures after ethanol conditioning. Conditioned and coated elastomeric ligatures may ultimately find application in the prevention of white spot lesions in orthodontic patients.

    Matched MeSH terms: Anti-Infective Agents*
  7. BETT WR
    Med J Malaya, 1956 Jun;10(4):338-40.
    PMID: 13399537
    Matched MeSH terms: Anti-Infective Agents, Local*
  8. Ching HS, Luddin N, Kannan TP, Ab Rahman I, Abdul Ghani NRN
    J Esthet Restor Dent, 2018 11;30(6):557-571.
    PMID: 30394667 DOI: 10.1111/jerd.12413
    OBJECTIVE: The aim of this review was to provide an insight about the factors affecting the properties of glass ionomer cements and provides a review regarding studies that are related to modification of glass ionomer cements to improve their properties, particularly on physical-mechanical and antimicrobial activity.

    METHODS: PubMed and Science Direct were searched for papers published between the years 1974 and 2018. The search was restricted to articles written in English related to modification of glass ionomer cements. Only articles published in peer-reviewed journals were included. The search included literature reviews, in vitro, and in vivo studies. Articles written in other languages, without available abstracts and those related to other field were excluded. About 198 peer-review articles in the English language were reviewed.

    CONCLUSION: Based on the finding, most of the modification has improved physical-mechanical properties of glass ionomer cements. Recently, researchers have attempted to improve their antimicrobial properties. However, the attempts were reported to compromise the physical-mechanical properties of modified glass ionomer cements.

    CLINICAL SIGNIFICANCE: As the modification of glass ionomer cement with different material improved the physical-mechanical and antimicrobial properties, it could be used as restorative material for wider application in dentistry.

    Matched MeSH terms: Anti-Infective Agents*
  9. Kow CS, Hasan SS
    Clin Drug Investig, 2020 10;40(10):989-990.
    PMID: 32816219 DOI: 10.1007/s40261-020-00961-z
    Matched MeSH terms: Anti-Infective Agents*
  10. Sharma A, Singh A, Dar MA, Kaur RJ, Charan J, Iskandar K, et al.
    J Infect Public Health, 2022 Feb;15(2):172-181.
    PMID: 34972026 DOI: 10.1016/j.jiph.2021.12.008
    Antimicrobial Resistance (AMR) is significant challenge humanity faces today, with many patients losing their lives every year due to AMR. It is more widespread and has shown a higher prevalence in low- and middle-income countries (LMICs) due to lack of awareness and other associated reasons. WHO has suggested some crucial guidelines and specific strategies such as antimicrobial stewardship programs taken at the institutional level to combat AMR. Creating awareness at the grassroots level can help to reduce the AMR and promote safe and effective use of antimicrobials. Control strategies in curbing AMR also comprise hygiene and sanitation as microbes travel from contaminated surroundings to the human body surface. As resistance to multiple drugs increases, vaccines can play a significant role in curbing the menace of AMR. This article summarizes the current surveillance practices and applied control measures to tackle the hostility in these countries with particular reference to the role of antimicrobial stewardship programs and the responsibilities of regulatory authorities in managing the situation.
    Matched MeSH terms: Anti-Infective Agents*
  11. Zhang Z, Hu Y, Ji H, Lin Q, Li X, Sang S, et al.
    Food Chem, 2023 Jul 30;415:135736.
    PMID: 36863232 DOI: 10.1016/j.foodchem.2023.135736
    Core-shell biopolymer nanoparticles are assembled from a hydrophobic protein (zein) core and a hydrophilic polysaccharide (carboxymethyl dextrin) shell. The nanoparticles were shown to have good stability and the ability to protect quercetin from chemical degradation under long-term storage, pasteurization, and UV irradiation. Spectroscopy analysis shows that electrostatic, hydrogen bonding, and hydrophobic interactions are the main driving forces for the formation of composite nanoparticles. Quercetin coated with nanoparticles significantly enhanced its antioxidant and antibacterial activities and showed good stability and slow release in vitro during simulated gastrointestinal digestion. Furthermore, the encapsulation efficiency of carboxymethyl dextrin-coated zein nanoparticles (81.2%) for quercetin was significantly improved compared with that of zein nanoparticles alone (58.4%). These results indicate that carboxymethyl dextrin-coated zein nanoparticles can significantly improve the bioavailability of hydrophobic nutrient molecules such as quercetin and provide a valuable reference for their application in the field of biological delivery of energy drinks and food.
    Matched MeSH terms: Anti-Infective Agents*
  12. Haryani Y, Halid NA, Guat GS, Nor-Khaizura MAR, Hatta A, Sabri S, et al.
    FEMS Microbiol Lett, 2023 Jan 17;370.
    PMID: 37002414 DOI: 10.1093/femsle/fnad023
    The present work investigated the profile and biodiversity of lactic acid bacteria (LAB) isolated from selected manufactured and homemade fermented foods in Malaysia. A total of 55 LAB were isolated from 20 samples, and identified based on the sequencing of 16S rRNA gene. The LAB isolates were identified as Lacticaseibacillus rhamnosus (34.5%), Lactiplantibacillus plantarum (20%), Limosilactobacillus fermentum (20%), Lacticaseibacillus paracasei (12.7%), Lacticaseibacillus casei (3.6%), Lactobacillus sp. (1.8%), Enterococcus faecalis (3.6%), Enterococcus faecium (1.8%), and Enterococcus durans (1.8%). Majority (94%) of the LAB isolates exhibited broad-spectrum antimicrobial activity against selected foodborne pathogens, and four isolates (L. fermentum SC1001, L. paracasei K2003, and L. rhamnosus KF1002 and MK2003) could produce bacteriocin-like inhibitory substance (BLIS). Lacticaseibacillus paracasei M1001 (homemade mozzarella) exhibited high-temperature tolerance and acid resistance, was homofermentative, and generated good antimicrobial activity, which strongly implied its potential for industrial applications. The present work results would potentially widen our knowledge of LAB diversity in Malaysian fermented foods and provide a potential for their applications in the food industry or other purposes.
    Matched MeSH terms: Anti-Infective Agents*
  13. Garudachari B, Isloor AM, Satyanarayana MN, Fun HK, Hegde G
    Eur J Med Chem, 2014 Mar 3;74:324-32.
    PMID: 24486415 DOI: 10.1016/j.ejmech.2014.01.008
    Three series of 8-trifluoromethylquinoline based 1,2,3-triazoles derivatives (5a-c, 6a-d and 7a-c) were synthesized by multi-step reactions by click chemistry approach. Synthesized compounds were characterized by spectral studies and X-ray analysis. The final compounds were screened for their in-vitro antimicrobial activity by well plate method (zone of inhibition). Compounds 5c, 6b, 8b, 11 and 12 were found to be active against tested microbial strains. The results are summarized in Tables 5 and 6.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*; Anti-Infective Agents/chemistry
  14. Deep A, Bhatia RK, Kaur R, Kumar S, Jain UK, Singh H, et al.
    Curr Top Med Chem, 2017;17(2):238-250.
    PMID: 27237332
    Imidazo[1,2-a]pyridine is one of the most potential bicyclic 5-6 heterocyclic rings that is recognized as a "drug prejudice" scaffold due to its broad range of applications in medicinal chemistry such as anticancer, antimycobacterial, antileishmanial, anticonvulsant, antimicrobial, antiviral, antidiabetic, proton pump inhibitor, insecticidal activities. This scaffold has also been represented in various marketed preparations such as zolimidine, zolpidem, alpidem. Therefore, several attempts were made to carry out the structural modifications of this scaffold to discover and develop novel therapeutic agents. This review provides a valuable insight into the research findings of wide range of derivatives of imidazo[1,2-a]pyridine scaffold leading to promising heterocyclic compounds which could be explored further for the synthesis of new derivatives as well as construction of potential drug-like chemical libraries for biological screening in search of new therapeutic agents.
    Matched MeSH terms: Anti-Infective Agents/therapeutic use*; Anti-Infective Agents/chemistry
  15. Khan MJ, Shameli K, Sazili AQ, Selamat J, Kumari S
    Molecules, 2019 Feb 16;24(4).
    PMID: 30781541 DOI: 10.3390/molecules24040719
    Green synthesis of silver nanoparticles is desirable practice. It is not only the required technique for industrial and biomedical purposes but also a promising research area. The aim of this study was to synthesize green curcumin silver nanoparticles (C-Ag NPs). The synthesis of C-Ag NPs was achieved by reduction of the silver nitrate (AgNO₃) in an alkaline medium. The characterizations of the prepared samples were conducted by ultraviolet visible (UV-vis) spectroscopy, powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and zeta potential (ZP) analyses. The formation of C-Ag NPs was evaluated by the dark color of the colloidal solutions and UV-vis spectra, with 445 nm as the maximum. The size of the crystalline nanoparticles, recorded as 12.6 ± 3.8nm, was confirmed by HRTEM, while the face-centered cubic (fcc) crystallographic structure was confirmed by PXRD and SAED. It is assumed that green synthesized curcumin silver nanoparticles (C-Ag NPs) can be efficiently utilized as a strong antimicrobial substance for food and meat preservation due to their homogeneous nature and small size.
    Matched MeSH terms: Anti-Infective Agents/administration & dosage*; Anti-Infective Agents/chemistry
  16. Jusoh S, Sirat HM, Ahmad F
    Nat Prod Commun, 2013 Sep;8(9):1317-20.
    PMID: 24273875
    The essential oils from the leaves, pseudostems, rhizomes and fruits of Alpinia rafflesiana were isolated by hydrodistillation. The oils were analysed by capillary GC and GC-MS. The most abundant components in the leaf oil were trans-caryophyllene (32.61%), caryophyllene oxide (8.67%), (2E,6Z)-farnesol (4.91%) and alpha-terpineol (4.25%), while 1,8-cineole (32.25%), myrcene (13.63%), alpha-terpineol (9.90%) and trans-caryophyllene (9.80%) were the main constituents in the pseudostem oil. The rhizome constituted of tetracosane (42.61%), tau-cadinol (7.46%), alpha-terpineol (6.71%) were the major components, whereas tetracosane (13.39%), (2E,6E)-farnesol (7.31%), alpha-terpineol (8.51%) and caryophyllene oxide (8.05%) were the main components in the fruit oil. Antimicrobial assay revealed that all the essential oils showed moderate to weak inhibition against the tested microorganisms. The leaf oil was the most active and inhibited both S. aureus and E. coli with MIC values of 7.81 microg/mL and 15.6 microg/mL, respectively.
    Matched MeSH terms: Anti-Infective Agents/analysis*
  17. Abdsamah O, Zaidi NT, Sule AB
    Pak J Pharm Sci, 2012 Jul;25(3):675-8.
    PMID: 22713960
    Present study aimed to investigate the in vitro antimicrobial activity of the chloroform, methanol and aqueous extracts of Ficus deltoidea at 10mg/ml, 20mg/ml and 50 mg/ml, respectively using the disc diffusion method against 2 Gram positive {Staphylococcus aureus (IMR S-277), Bacillus subtilis (IMR K-1)}, 2 Gram negative {Escherichia coli (IMR E-940), Pseudomonas aeroginosa (IMR P-84)} and 1 fungal strain, Candida albicans (IMR C-44). All the extracts showed inhibitory activity on the fungus, Gram-positive and Gram-negative bacteria strains tested except for the chloroform and aqueous extracts on B. subtilis, E. coli, and P. aeroginosa. The methanol extract exhibited good antibacterial and antifungal activities against the test organisms. The methanol extract significantly inhibited the growth of S. aureus forming a wide inhibition zone (15.67 ± 0.58 mm) and lowest minimum inhibitory concentration (MIC) value (3.125 mg/ml). B. subtilis was the least sensitive to the chloroform extract (6.33 ± 0.58 mm) and highest minimum inhibitory concentration (MIC) value (25 mg/ml). Antimicrobial activity of F. deltoidea in vitro further justifies its utility in folkleric medicines for the treatment of infections of microbial origin.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  18. Dhingra S, Rahman NAA, Peile E, Rahman M, Sartelli M, Hassali MA, et al.
    Front Public Health, 2020;8:535668.
    PMID: 33251170 DOI: 10.3389/fpubh.2020.535668
    Antibiotics changed medical practice by significantly decreasing the morbidity and mortality associated with bacterial infection. However, infectious diseases remain the leading cause of death in the world. There is global concern about the rise in antimicrobial resistance (AMR), which affects both developed and developing countries. AMR is a public health challenge with extensive health, economic, and societal implications. This paper sets AMR in context, starting with the history of antibiotics, including the discovery of penicillin and the golden era of antibiotics, before exploring the problems and challenges we now face due to AMR. Among the factors discussed is the low level of development of new antimicrobials and the irrational prescribing of antibiotics in developed and developing countries. A fundamental problem is the knowledge, attitude, and practice (KAP) regarding antibiotics among medical practitioners, and we explore this aspect in some depth, including a discussion on the KAP among medical students. We conclude with suggestions on how to address this public health threat, including recommendations on training medical students about antibiotics, and strategies to overcome the problems of irrational antibiotic prescribing and AMR.
    Matched MeSH terms: Anti-Infective Agents*
  19. Kasan NA, Yusof SZM, Manan H, Khairul WM, Zakeri HA
    J Environ Manage, 2021 Sep 15;294:113008.
    PMID: 34119989 DOI: 10.1016/j.jenvman.2021.113008
    High nutrient loading in aquatic environment has become the main causative of harmful algae blooms (HABs) in water resources particularly pond, lake and river. HABs are mostly dominated by microalgae derived from the group of blue-green algae which are capable of releasing harmful toxins. Therefore, this study aims to investigate the inhibitory effects of thiourea derivatives on the growth of such blue-green algae. Thiourea derivatives have been proven to exhibit antifungal and antibacterial effects. However, there is still limited study had been conducted on the effect of thiourea derivatives toward blue-green algae species in recent years. In this research, a species of blue-green algae from Kenyir Lake, Terengganu, Malaysia was successfully isolated using morphological characters and molecularly identified as Synechoccus elongatus. Four new thiourea derivative compounds were also successfully synthesised. The compounds were designed with variation on different R-substitution group and characterised using Nuclear Magnetic Resonance (NMR) to confirm their molecular structure. Those compounds were characterised as 1-Benzyl-3-(3,5-dimethoxy-benzoyl)-thiourea (C1), 1-(3-Chloro-benzyl)-3-(3,5-dimethoxy-benzoyl)-thiourea (C2), 1-(3,5-Dimethoxy-benzoyl)-3-(3-methyl-benzyl)-thiourea (C3) and 1-(3,5-Dimethoxy-benzoyl)-3-(3-trifluoromethyl-benzyl)-thiourea (C4). For the inhibition assessment,S. elongatus were treated with C1-C4 for 5 day at concentration of 2, 5, 10 and 20 μg/ml, respectively. C3 compound showed the highest inhibition percentage with 98% of inhibition after 5 days treatment. By using Bradford method, protein extraction of S. elongatus was conducted at the highest inhibition percentage. Protein concentration of treated species was observed with 3.28 μg/ml as compared to protein concentration of control with 6.48 μg/ml. This result indicated the reduction of protein content after the treatment. Protein band pattern was identified intensed after the treatment SDS PAGE was carried out. The thiourea derivatives compound proved to have successfully inhibited the growth of blue-green algae. Hence, further study should be carried out to ensure the compound can be practically utilized in the pond and in natural environment.
    Matched MeSH terms: Anti-Infective Agents*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links