Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N
    Microb Pathog, 2018 Feb;115:57-63.
    PMID: 29248514 DOI: 10.1016/j.micpath.2017.12.039
    Zinc oxide nanoparticles (ZnONPs) exhibit abundant biomedical applications. Anisotropic ZnONPs with a defined shape and size were synthesized using Bacillus megaterium (NCIM 2326) cell free extract as a bio-reductant. The study investigated the multidimensional effect of ZnONPs on Helicobacter pylori strains and assessed its biosafety in normal human mesenchymal stem cells (hMSc). The highly stable ZnONPs were produced using B. megaterium and Zinc nitrate as a precursor. The phase of ZnONPs formation and structural characterization were performed by UV- visible (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Field Emission Scanning electron microscopy (FESEM) analysis. Furthermore, the ZnONPs exhibited higher biocompatibility against human mesenchymal stem cells (hMSC) and proved to be potentially safe in mammalian cells. Corroborating the current investigation, we described the anti-H. Pylori dosage of ZnONPs was safe to hMSC and could efficiently use as nano-antibiotic.
    Matched MeSH terms: Anisotropy
  2. Nair SR, Tan LK, Mohd Ramli N, Lim SY, Rahmat K, Mohd Nor H
    Eur Radiol, 2013 Jun;23(6):1459-66.
    PMID: 23300042 DOI: 10.1007/s00330-012-2759-9
    OBJECTIVE: To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD).

    METHODS: 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3.

    RESULTS: Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified.

    CONCLUSION: Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD.

    KEY POINTS: • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

    Matched MeSH terms: Anisotropy
  3. Ramli N, Lim CH, Rajagopal R, Tan LK, Seow P, Ariffin H
    Pediatr Radiol, 2020 08;50(9):1277-1283.
    PMID: 32591982 DOI: 10.1007/s00247-020-04717-x
    BACKGROUND: Intrathecal and intravenous chemotherapy, specifically methotrexate, might contribute to neural microstructural damage.

    OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.

    MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.

    RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.

    CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.

    Matched MeSH terms: Anisotropy
  4. Chai HY, Wee LK, Swee TT, Salleh ShH, Chea LY
    Biomed Eng Online, 2011;10:87.
    PMID: 21952080 DOI: 10.1186/1475-925X-10-87
    Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction.
    Matched MeSH terms: Anisotropy
  5. Manssor NA, Radzi Z, Yahya NA, Mohamad Yusof L, Hariri F, Khairuddin NH, et al.
    Skin Pharmacol Physiol, 2016;29(2):55-62.
    PMID: 26836267 DOI: 10.1159/000431328
    Mechanical properties of expanded skin tissue are different from normal skin, which is dependent mainly on the structural and functional integrity of dermal collagen fibrils. In the present study, mechanical properties and surface topography of both expanded and nonexpanded skin collagen fibrils were evaluated. Anisotropic controlled rate self-inflating tissue expanders were placed beneath the skin of sheep's forelimbs. The tissue expanders gradually increased in height and reached equilibrium in 2 weeks. They were left in situ for another 2 weeks before explantation. Expanded and normal skin samples were surgically harvested from the sheep (n = 5). Young's modulus and surface topography of collagen fibrils were measured using an atomic force microscope. A surface topographic scan showed organized hierarchical structural levels: collagen molecules, fibrils and fibers. No significant difference was detected for the D-banding pattern: 63.5 ± 2.6 nm (normal skin) and 63.7 ± 2.7 nm (expanded skin). Fibrils from expanded tissues consisted of loosely packed collagen fibrils and the width of the fibrils was significantly narrower compared to those from normal skin: 153.9 ± 25.3 and 106.7 ± 28.5 nm, respectively. Young's modulus of the collagen fibrils in the expanded and normal skin was not statistically significant: 46.5 ± 19.4 and 35.2 ± 27.0 MPa, respectively. In conclusion, the anisotropic controlled rate self-inflating tissue expander produced a loosely packed collagen network and the fibrils exhibited similar D-banding characteristics as the control group in a sheep model. However, the fibrils from the expanded skin were significantly narrower. The stiffness of the fibrils from the expanded skin was higher but it was not statistically different.
    Matched MeSH terms: Anisotropy
  6. Ramli N, Yap A, Muridan R, Seow P, Rahmat K, Fong CY, et al.
    Clin Radiol, 2020 01;75(1):77.e15-77.e22.
    PMID: 31668796 DOI: 10.1016/j.crad.2019.09.134
    AIM: To evaluate the microstructural abnormalities of the white matter tracts (WMT) using diffusion tensor imaging (DTI) in children with global developmental delay (GDD).

    MATERIALS AND METHODS: Sixteen children with GDD underwent magnetic resonance imaging (MRI) and cross-sectional DTI. Formal developmental assessment of all GDD patients was performed using the Mullen Scales of Early Learning. An automated processing pipeline for the WMT assessment was implemented. The DTI-derived metrics of the children with GDD were compared to healthy children with normal development (ND).

    RESULTS: Only two out of the 17 WMT demonstrated significant differences (p<0.05) in DTI parameters between the GDD and ND group. In the uncinate fasciculus (UF), the GDD group had lower mean values for fractional anisotropy (FA; 0.40 versus 0.44), higher values for mean diffusivity (0.96 versus 0.91×10-3 mm2/s) and radial diffusivity (0.75 versus 0.68×10-3 mm2/s) compared to the ND group. In the superior cerebellar peduncle (SCP), mean FA values were lower for the GDD group (0.38 versus 0.40). Normal myelination pattern of DTI parameters was deviated against age for GDD group for UF and SCP.

    CONCLUSION: The UF and SCP WMT showed microstructural changes suggestive of compromised white matter maturation in children with GDD. The DTI metrics have potential as imaging markers for inadequate white matter maturation in GDD children.

    Matched MeSH terms: Anisotropy
  7. Singh, Darshan, Chye, Yann, Chao, Suo, Yücel, Murat, Grundmann, Oliver, Muhamad Zabidi Ahmad, et al.
    MyJurnal
    Mitragyna speciosa (Korth.) or kratom is a native medicinal plant of Southeast Asia. Commonly used by hard labours in harsh working environment, the ingestion of brewed kratom decoction is reported to produce dose-dependent stimulant and opioid-like effects. Kratom is also regularly consumed as a pain killer and as traditional cure for common maladies such as fever and cough. However, it remains unknown whether regular consumption of kratom decoction is associated with brain abnormalities in regular users in traditional settings. Methods: A total of 14 subjects (7 regular kratom users and 7 non-kratom users) voluntarily participated in this cross-sectional study. Face-to-face interviews were conducted with kratom users to determine history of kratom use and later these respondents underwent brain magnetic resonance imaging (MRI). Results: There were no significant differences (p>0.05) in the intracranial volume (ICV), cortical volumes (frontal, parietal, temporal, occipital, or cingulate lobe), or subcortical volumes (striatum, hippocampus, or amygdala), as well as in the diffusion tensor imaging (DTI) metrics, fractional anisotropy (FA) and mean diffusivity (MD) between kratom users and the controls. Conclusion: This preliminary study showed long-term consumption of kratom decoction is not significantly associated with altered brain structures in regular kratom users in traditional settings. However, further study is needed to establish more data for kratom use and its effects.
    Matched MeSH terms: Anisotropy
  8. Sagisaka M, Ono S, James C, Yoshizawa A, Mohamed A, Guittard F, et al.
    Colloids Surf B Biointerfaces, 2018 Aug 01;168:201-210.
    PMID: 29276082 DOI: 10.1016/j.colsurfb.2017.12.012
    Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO2. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO2 (W/CO2) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W0) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO2 microemulsions were found to increase in size with increasing W0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO2 microemulsion droplets increased linearly with W0, and finally reached ∼39 Å and ∼78 Å at W0 = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO2 interfaces, and so play important roles for tuning the W/CO2 interfacial curvature. The super-efficient W/CO2-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.
    Matched MeSH terms: Anisotropy
  9. Giaze TR, Shuid AN, Soelaiman IN, Muhammad N, Jamal JA, Fauzi MB, et al.
    J Tradit Complement Med, 2019 Oct;9(4):393-400.
    PMID: 31453136 DOI: 10.1016/j.jtcme.2019.01.002
    Background: Marantodes pumilum var. alata (MPva), popularly known as Kacip Fatimah, is widely used to maintain female reproductive health, facilitate post-partum recovery and manage symptoms of menopause and osteoporosis in South-East Asia. This study aims to further evaluate the osteoprotective potential of MPva in view of reports of its bone-protective properties in postmenopausal condition.

    Methods: Thirty female Sprague-Dawley rats were sorted into 5 groups (n = 6) namely: MPv (leaf treatment); MPr (root treatment); ERT (estrogen treatment); OVXC (untreated ovariectomized control) and Sham (untreated sham-operated control). All rats (except the Sham) were ovariectomized to induce a state of estrogen deficiency that simulates menopause. Two weeks after ovariectomy, the rats were treated for 8 weeks with oral gavages of estrogen and plant extracts. The ERT group received 64.5 μg/kg/day dose of estrogen while MPv and MPr groups received 20 mg/kg/day dose of leaf and root extracts, respectively. At the end of treatment, left femora were excised from euthanized rats and investigated for changes in bone micro-architecture, mineral density, and biomechanical properties.

    Results: Bone volume fraction, degree of anisotropy and structure-model-index of bone were significantly improved (p 

    Matched MeSH terms: Anisotropy
  10. Zolkefley MKI, Firwana YMS, Hatta HZM, Rowbin C, Nassir CMNCM, Hanafi MH, et al.
    J Phys Ther Sci, 2021 Jan;33(1):75-83.
    PMID: 33519079 DOI: 10.1589/jpts.33.75
    [Purpose] Understanding the essential mechanisms in post-stroke recovery not only provides important basic insights into brain function and plasticity but can also guide the development of new therapeutic approaches for stroke patients. This review aims to give an overview of how various variables of Magnetic Resonance-Diffusion Tensor Imaging (MR-DTI) metrics of fractional anisotropy (FA) can be used as a reliable quantitative measurement and indicator of corticospinal tract (CST) changes, particularly in relation to functional motor outcome correlation with a Fugl-Meyer assessment in stroke rehabilitation. [Methods] PubMed electronic database was searched for the relevant literature, using key words of diffusion tensor imaging (dti), corticospinal tract, and stroke. [Results] We reviewed the role of FA in monitoring CST remodeling and its role of predicting motor recovery after stroke. We also discussed the mechanism of CST remodeling and its modulation from the value of FA and FMA-UE. [Conclusion] Heterogeneity of post-stroke brain disorganization and motor impairment is a recognized challenge in the development of accurate indicators of CST integrity. DTI-based FA measurements offer a reliable and evidence-based indicator for CST integrity that would aid in predicting motor recovery within the context of stroke rehabilitation.
    Matched MeSH terms: Anisotropy
  11. Nur Hartini Mohd Taib, Wan Ahmad Kamil Wan Abdullah, Ibrahim Lutfi Shuaib
    MyJurnal
    Diffusion Tensor Imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique. DTI provides quantitative information at microstuructural level via its parameter indices e.g. mean diffusivity (MD) and fractional anisotropy (FA). It also allows for visualization of neuron fibres through a specific technique called fibre tractography. Leukoaraiosis is an asymptomatic pathological condition of the brain white matter which appears hyperintense on T2-weighted MRI images. Association of leukoaraiosis with age and ischemic heart disease have been previously reported. The objective of this study is to compare MD and FA values measured in various areas of the brain white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) in humans using DTI. 30 subjects with leukoaraiosis and 12 subjects without leukoaraiosis underwent brain scan using GE 1.5 Tesla MRI system. Region of interests were located in the CSF and various WM and GM areas. Comparison of MD and FA values was made between leukoaraiosis tissue (LA) and normal appearing brain tissue (NABT) measured within the same leukoaraiosis subjects, and with normal brain tissue (CONTROL) of healthy control subjects. LA demonstrated a significantly higher MD and lower FA compared to NABT and CONTROL in frontal and occipital WM areas. No differences were observed in MD in any brain region between NABT and CONTROL. Whereas no differences were observed in FA between NABT and CONTROL except in the occipital WM. Fibre tractography showed 31.7% to 56.1% lesser fibre tracts in LA subjects compared to CONTROL subjects. Significant differences were found between pathological tissue compared to normal appearing brain tissue and normal brain tissue. Fibre tractography exposed reduced number of neural fibres in leukoaraiosis subjects as compared to normal subjects.
    Matched MeSH terms: Anisotropy
  12. Mutafi A, Yidris N, Koloor SSR, Petrů M
    Materials (Basel), 2020 Nov 26;13(23).
    PMID: 33256257 DOI: 10.3390/ma13235378
    Stainless steels are increasingly used in construction today, especially in harsh environments, in which steel corrosion commonly occurs. Cold-formed stainless steel structures are currently increasing in popularity because of its efficiency in load-bearing capacity and its appealing architectural appearance. Cold-rolling and press-braking are the cold-working processes used in the forming of stainless steel sections. Press braking can produce large cross-sections from thin to thick-walled sections compared to cold-rolling. Cold-forming in press-braked sections significantly affect member behaviour and joints; therefore, they have attained great attention from many researchers to initiate investigations on those effects. This paper examines the behaviour of residual stress distribution of stainless steel press-braked sections by implementing three-dimensional finite element (3D-FE) technique. The study proposed a full finite element procedure to predict the residual stresses starting from coiling-uncoiling to press-braking. This work considered material anisotropy to examine its effect on the residual stress distribution. The technique adopted was compared with different finite element techniques in the literature. This study also provided a parametric study for three corner radius-to-thickness ratios looking at the through-thickness residual stress distribution of four stainless steels (i.e., ferritic, austenitic, duplex, lean duplex) in which have their own chemical composition. In conclusion, the comparison showed that the adopted technique provides a detailed prediction of residual stress distribution. The influence of geometrical aspects is more pronounced than the material properties. Neglecting the material anisotropy shows higher shifting in the neutral axis. The parametric study showed that all stainless steel types have the same stress through-thickness distribution. Moreover, R/t ratios' effect is insignificant in all transverse residual stress distributions, but a slight change to R/t ratios can affect the longitudinal residual stress distribution.
    Matched MeSH terms: Anisotropy
  13. Mawarnis ER, Ali Umar A, Tomitori M, Balouch A, Nurdin M, Muzakkar MZ, et al.
    ACS Omega, 2018 Sep 30;3(9):11526-11536.
    PMID: 31459253 DOI: 10.1021/acsomega.8b01268
    A combinative effect of two or more individual material properties, such as lattice parameters and chemical properties, has been well-known to generate novel nanomaterials with special crystal growth behavior and physico-chemical performance. This paper reports unusually high catalytic performance of AgPt nanoferns in the hydrogenation reaction of acetone conversion to isopropanol, which is several orders higher compared to the performance shown by pristine Pt nanocatalysts or other metals and metal-metal oxide hybrid catalyst systems. It has been demonstrated that the combinative effect during the bimetallisation of Ag and Pt produced nanostructures with a highly anisotropic morphology, i.e., hierarchical nanofern structures, which provide high-density active sites on the catalyst surface for an efficient catalytic reaction. The extent of the effect of structural growth on the catalytic performance of hierarchical AgPt nanoferns is discussed.
    Matched MeSH terms: Anisotropy
  14. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Mohd Sharif NH, et al.
    Ultrasound Med Biol, 2020 01;46(1):34-45.
    PMID: 31594681 DOI: 10.1016/j.ultrasmedbio.2019.08.011
    Tissue elasticity is related to the pathologic state of kidneys and can be measured using shear wave elastography (SWE). However, SWE quantification has not been rigorously validated. The aim of this study was to evaluate the accuracy of SWE-measured stiffness and the effect of tissue anisotropy on SWE measurements. Point SWE (pSWE), 2-D SWE and dynamic mechanical analysis (DMA) were used to measure stiffness and evaluate the effect of tissue anisotropy on the measurements. SWE and DMA were performed on phantoms of different gelatin concentrations. In the tissue anisotropy study, SWE and DMA were performed on the outer cortex of sheep kidneys. In the in vivo study, 15 patients with different levels of interstitial fibrosis were recruited for pSWE measurements. Another 10 healthy volunteers were recruited for tissue anisotropy studies. SWE imaging revealed a non-linear increase with gelatin concentration. There was a significant correlation between pSWE and 2-D SWE, leading to the establishment of a linear regression equation between the two SWE ultrasound measurements. In the anisotropy study, the median difference in stiffness between shear waves oriented at 0° and 90° towards the pyramid axis was significant. In the in vivo study, there was a strong positive linear correlation between pSWE and the percentage of interstitial fibrosis. There was a significant difference in the Young's modulus (YM) between severities of fibrosis. The mean YM values were lower in control patients than in patients with mild, moderate and severe fibrosis. YM values were also significantly higher when shear waves were oriented at 0° toward the pyramid axis. Tissue stiffness and anisotropy affects SWE measurements. These factors should be recognized before applying SWE for the interpretation of measured values.
    Matched MeSH terms: Anisotropy
  15. Shoaib MA, Hossain MB, Hum YC, Chuah JH, Mohd Salim MI, Lai KW
    Curr Med Imaging, 2020;16(6):739-751.
    PMID: 32723246 DOI: 10.2174/1573405615666190903143330
    BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise.

    AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.

    METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.

    RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.

    CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.

    Matched MeSH terms: Anisotropy
  16. Mohammed HG, Albarody TMB, Susilawati S, Gohari S, Doyan A, Prayogi S, et al.
    Materials (Basel), 2021 May 18;14(10).
    PMID: 34070195 DOI: 10.3390/ma14102650
    This paper introduces a new spark plasma sintering technique that is able to order crystalline anisotropy by in-series/in situ DC electric coupled magnetic field. The process control parameters have been investigated on the production of anisotropic BaFe12O19 magnets based on resulted remanence (Mr). Sintering holding time (H.T.), cooling rate (C.R.), pressure (P), and sintering temperature (S.T.) are optimized by Taguchi with L9 orthogonal array (OA). The remanent magnetization of nanocrystalline BaFe12O19 in parallel (Mrǁ) and perpendicular (MrꞱ) to the applied magnetic field was regarded as a measure of performance. The Taguchi study calculated optimum process parameters, which significantly improved the sintering process based on the confirmation tests of BaFe12O19 anisotropy. The magnetic properties in terms of Mrǁ and MrꞱ were greatly affected by sintering temperature and pressure according to ANOVA results. In addition, regression models were developed for predicting the Mrǁ as well as MrꞱ respectively.
    Matched MeSH terms: Anisotropy
  17. Sugandi, G., Majlis, B.Y.
    ASM Science Journal, 2012;6(2):122-127.
    MyJurnal
    Since its invention, polyimide (PI) has been widely used in micro-electro-mechanical system (MEMS) devices. For fabrication, the PI membrane, PI-2723 HD-Microsystems was used as the membrane material due to its Young's modulus of 2.7 GPa and its film thickness could easily be controlled by changing the speed of the spin coater system. The application PI as membrane structure on silicon wafers therefore gave a much better mechanical performance then conventional membranes made of silicon dioxide (SiO2) or silicon nitride (Si3N4) layers. The fabrication of PI membrane was the same as for SiO2 and Si3N4 membranes; the basic step was to etch a side of the silicon wafer using wet anisotropic etching. This paper proposes an effective process for fabrication of PI membrane with f ast and little supervision. In this process, a dual step process was wet anisotropic etching of single crystal silicon using pottasium hydroxyl (KOH) with different concentrations and temperature processes. For the first process, 45% KOH under boiling temperature was used to etch at least 90%–95% of the silicon. In the second process, the silicon was submerged in 45% KOH with temperature at 70ºC–80ºC to etch away the residual silicon until a clean and transparent PI membrane was achieved. Using this method, the fabrication of PI membrane could be generated fast.
    Matched MeSH terms: Anisotropy
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 May 18;120(20):202301.
    PMID: 29864330 DOI: 10.1103/PhysRevLett.120.202301
    The prompt D^{0} meson azimuthal anisotropy coefficients, v_{2} and v_{3}, are measured at midrapidity (|y|<1.0) in Pb-Pb collisions at a center-of-mass energy sqrt[s_{NN}]=5.02  TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (p_{T}) range of 1 to 40  GeV/c, for central and midcentral collisions. The v_{2} coefficient is found to be positive throughout the p_{T} range studied. The first measurement of the prompt D^{0} meson v_{3} coefficient is performed, and values up to 0.07 are observed for p_{T} around 4  GeV/c. Compared to measurements of charged particles, a similar p_{T} dependence, but smaller magnitude for p_{T}<6  GeV/c, is found for prompt D^{0} meson v_{2} and v_{3} coefficients. The results are consistent with the presence of collective motion of charm quarks at low p_{T} and a path length dependence of charm quark energy loss at high p_{T}, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.
    Matched MeSH terms: Anisotropy
  19. Cheah PL, Krisnan T, Wong JHD, Rozalli FI, Fadzli F, Rahmat K, et al.
    J Magn Reson Imaging, 2021 02;53(2):437-444.
    PMID: 32918328 DOI: 10.1002/jmri.27354
    BACKGROUND: Charcot-Marie-Tooth (CMT) disease is diagnosed through clinical findings and genetic testing. While there are neurophysiological tools and clinical functional scales in CMT, objective disease biomarkers that can facilitate in monitoring disease progression are limited.

    PURPOSE: To investigate the utility of diffusion tensor imaging (DTI) in determining the microstructural integrity of sciatic and peroneal nerves and its correlation with the MRI grading of muscle atrophy severity and clinical function in CMT as determined by the CMT neuropathy score (CMTNS).

    STUDY TYPE: Prospective case-control.

    SUBJECTS: Nine CMT patients and nine age-matched controls.

    FIELD STRENGTH/SEQUENCE: 3 T T1 -weighted in-/out-of phase spoiled gradient recalled echo (SPGR) and DTI sequences.

    ASSESSMENT: Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) values for sciatic and peroneal nerves were obtained from DTI. Muscle atrophy was graded according to the Goutallier classification using in-/out-of phase SPGRs. DTI parameters and muscle atrophy grades were compared between CMT and controls, and the relationship between DTI parameters, muscle atrophy grades, and CMTNS were assessed.

    STATISTICAL TESTS: The Wilcoxon Signed Ranks test was used to compare DTI parameters between CMT and controls. The relationship between DTI parameters, muscle atrophy grades, and CMTNS were analyzed using the Spearman correlation. Receiver operating characteristic (ROC) analyses of DTI parameters that can differentiate CMT from healthy controls were done.

    RESULTS: There was a significant reduction in FA and increase in RD of both nerves (P 

    Matched MeSH terms: Anisotropy
  20. Yahya N, Manan HA
    Eur J Cancer Care (Engl), 2021 Jan;30(1):e13329.
    PMID: 32909654 DOI: 10.1111/ecc.13329
    BACKGROUND: Diffusion tensor imaging (DTI) can detect changes to white matter tracts following assaults including high dose radiation. This study aimed to systematically evaluate DTI indices to predict cognitive changes following adult radiotherapy.

    MATERIALS AND METHODS: We searched PubMed and Scopus electronic databases to identify eligible studies according to PRISMA guidelines. Studies were extracted for information on demographics, DTI changes and associations to cognitive outcomes.

    RESULTS: Six studies were selected for inclusion with 110 patients (median study size: 20). 5/6 studies found significant cognitive decline and analysed relationships to DTI changes. Decreased fractional anisotropy (FA) was consistently associated with cognitive decline. Associations clustered at specific regions of cingulum and corpus callosum. Only one study conducted multivariable analysis.

    CONCLUSION: Fractional anisotropy is a clinically meaningful biomarker for radiotherapy-related cognitive decline. Studies accruing larger patient cohorts are needed to guide therapeutic changes that can abate the decline.

    Matched MeSH terms: Anisotropy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links