Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Aziman N, Abdullah N, Noor ZM, Kamarudin WS, Zulkifli KS
    J Food Sci, 2014 Apr;79(4):M583-92.
    PMID: 24666004 DOI: 10.1111/1750-3841.12419
    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  2. Chen GX, He WW, Wang Y, Zou YD, Liang JB, Liao XD, et al.
    Sci Total Environ, 2014 May 1;479-480:241-6.
    PMID: 24561929 DOI: 10.1016/j.scitotenv.2014.01.124
    The degradation behavior of veterinary antibiotics in soil is commonly studied using the following methods of adding antibiotics to the soil: (i) adding manure collected from animals fed with a diet containing antibiotics, (ii) adding antibiotic-free animal manure spiked with antibiotics and (iii) directly adding antibiotics. No research simultaneously comparing different antibiotic addition methods was found. Oxytetracycline (OTC) was used as a model antibiotic to compare the effect of the three commonly used antibiotic addition methods on OTC degradation behavior in soil. The three treatment methods have similar trends, though OTC degradation half-lives show the following significant differences (P<0.05): manure from swine fed OTC (treatment A)
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  3. Li Q, Wang Y, Zou YD, Liao XD, Liang JB, Xin W, et al.
    Sci Total Environ, 2015 Sep 15;527-528:126-34.
    PMID: 25958362 DOI: 10.1016/j.scitotenv.2015.04.117
    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  4. Yong AL, Ooh KF, Ong HC, Chai TT, Wong FC
    Food Chem, 2015 Nov 1;186:32-6.
    PMID: 25976788 DOI: 10.1016/j.foodchem.2014.11.103
    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  5. Shahdadi F, Faryabi M, Khan H, Sardoei AS, Fazeli-Nasab B, Goh BH, et al.
    Molecules, 2023 Jun 05;28(11).
    PMID: 37299028 DOI: 10.3390/molecules28114554
    Mentha longifolia is a valuable medicinal and aromatic plant that belongs to Lamiaceae family. This study looked at the antibacterial effects of M. longifolia essential oil and pulegone in edible coatings made of chitosan and alginate on the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli in cheese. For this purpose, first fresh mint plant was collected from the cold region of Jiroft in Kerman province. Plant samples were dried in the shade at ambient temperature, and essential oil was prepared using Clevenger. The essential oil was analyzed by gas chromatography using mass spectrometric (GC/MS) detection. The major composition of M. longifolia oil was pulegone (26.07%), piperitone oxide (19.72%), and piperitone (11.88%). The results showed that adding M. longifolia essential oils and pulegone to edible coatings significantly reduced the growth of bacteria during storage. The bacterial population decreased by increasing the concentration of chitosan, M. longifolia, and pulegone in edible coatings. When the effects of pulegone and M. longifolia essential oils on bacteria were compared, it was found that pulegone had a stronger effect on bacterial population reduction. Coating treatments showed more antibacterial activity on E. coli than other bacteria. In general, the results of this research showed that alginate and chitosan coatings along with M. longifolia essential oil and its active ingredient pulegone had antibacterial effects against S. aureus, L. monocytogenes, and E. coli in cheese.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  6. Rehman A, Siddiqa A, Abbasi MA, Siddiqui SZ, Khan SG, Rasool S, et al.
    Pak J Pharm Sci, 2018 Sep;31(5):1783-1790.
    PMID: 30150171
    A number of novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives (6a-l) have been synthesized to evaluate their antibacterial activity. Using aryl/aralkyl carboxylic acids (1a-l) as precursors, 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l) were yielded in good amounts. The derivatives, 4a-l, were subjected to electrophilic substitution reaction on stirring with 6-bromo-3,4-methylenedioxybenzyl chloride (5) in DMF to synthesize the required compounds. All the synthesized molecules were well characterized by IR, 1H-NMR, 13C-NMR and EIMS spectral data and evaluated for antibacterial activity against some bacterial strains of Gram-bacteria. The molecule, 6d, demonstrated the best activity among all the synthesized molecules exhibiting weak to moderate inhibition potential.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  7. Ho YB, Zakaria MP, Latif PA, Saari N
    Sci Total Environ, 2014 Aug 1;488-489:261-7.
    PMID: 24836135 DOI: 10.1016/j.scitotenv.2014.04.109
    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  8. Ho YB, Zakaria MP, Latif PA, Saari N
    J Chromatogr A, 2012 Nov 2;1262:160-8.
    PMID: 23026257 DOI: 10.1016/j.chroma.2012.09.024
    A multi-residue analytical method was developed to quantify nine antibiotics and one hormone in soil, broiler manure and manure compost. The developed method was based on ultrasonic extraction with MeOH:ACN:EDTA:McIlvaine buffer, solid phase extraction (SPE) using HLB (3 cc/60 mg) cartridge, followed by instrumental analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with 25 min total run time. It was validated and tested on soil, broiler manure and manure compost samples and showed that the method is able to simultaneously detect and quantify the target analytes with good selectivity and sensitivity. The developed method was linear in a concentration range from its instrumental quantification limit (IQL) to 500 ng/mL, with correlation coefficients higher than 0.999. The overall method performance was good for the majority of the analytes, with recoveries range from 63% to 121% in all the sample matrices. The method quantification limit (MQL) for the 10 target analytes in the soil, broiler manure and manure compost samples were 2-10, 3-16 and 5-15 μg/kg dry weight (DW), respectively. The method has also included tilmicosin, an antibiotic known to be reported in the environment for the first time. The developed method was then applied on broiler manure samples and its relative manure amended agricultural soil samples to identify and quantify veterinary antibiotic and hormone residues in the environment. These analytes were detected in broiler manure and soil samples, with maximum concentrations reaching up to 78516.1 μg/kg DW (doxycycline) and 1331.4 μg/kg DW (flumequine), respectively. The results showed that the method can potentially be adopted for the analysis of veterinary antibiotic and hormone wastes in solid environmental matrices.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  9. Ho YB, Zakaria MP, Latif PA, Saari N
    Bioresour Technol, 2013 Mar;131:476-84.
    PMID: 23384781 DOI: 10.1016/j.biortech.2012.12.194
    The fate of nine veterinary antibiotics and one hormone in broiler manure during 40 days of composting was investigated. Results showed that composting can significantly reduce the concentration of veterinary antibiotics and hormone in broiler manure, making application of the post-compost manure safer for soil application. More than 99% of the nine antibiotics and one hormone involved in this study were removed from the manure during 40 days of composting. The target antibiotics and hormone showed short half-life in broiler manure composting, ranging from 1.3 to 3.8 days. The relationship between the physico-chemical properties of soil, manure and manure compost and its veterinary antibiotic and hormone concentration was statistically evaluated by Pearson correlation matrix. The concentration of veterinary antibiotics and hormone in manure compost was suggested to be affected by physico-chemical properties such as pH, temperature, total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and metal contents.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  10. Shimizu A, Takada H, Koike T, Takeshita A, Saha M, Rinawati, et al.
    Sci Total Environ, 2013 May 1;452-453:108-15.
    PMID: 23500404 DOI: 10.1016/j.scitotenv.2013.02.027
    Seven sulfonamides, trimethoprim, five macrolides, lincomycin and three tetracyclines were measured in 150 water samples of sewage, livestock and aquaculture wastewater, and river and coastal waters, in five tropical Asian countries. The sum of the concentrations of the target antibiotics in sewage and heavily sewage-impacted waters were at sub- to low-ppb levels. The most abundant antibiotic was sulfamethoxazole (SMX), followed by lincomycin and sulfathiazole. The average concentration of SMX in sewage or heavily sewage-impacted waters was 1720 ng/L in Vietnam (Hanoi, Ho Chi Minh, Can Tho; n=15), 802ng/L in the Philippines (Manila; n=4), 538 ng/L in India (Kolkata; n=4), 282 ng/L in Indonesia (Jakarta; n=10), and 76 ng/L in Malaysia (Kuala Lumpur; n=6). These concentrations were higher than those in Japan, China, Europe, the US and Canada. A predominance of sulfonamides, especially SMX, is notable in these tropical countries. The higher average concentrations, and the predominance of SMX, can be ascribed to the lower cost of the antibiotics. Both the concentration and composition of antibiotics in livestock and aquaculture wastewater varied widely. In many cases, sulfamethazine (SMT), oxytetracycline (OTC), lincomycin, and SMX were predominant in livestock and aquaculture wastewater. Both human and animal antibiotics were widely distributed in the respective receiving waters (i.e., the Mekong River and Manila Bay). SMT/SMX ratios indicate a significant contribution from livestock wastewater to the Mekong River and nearby canals, with an estimated ~10% of river water SMX derived from such wastewater. Mass flow calculations estimate that 12 tons of SMX is discharged annually from the Mekong River into the South China Sea. Riverine inputs of antibiotics may significantly increase the concentration of such antibiotics in the coastal waters.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  11. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW
    J Pharm Biomed Anal, 2024 Feb 15;239:115912.
    PMID: 38128161 DOI: 10.1016/j.jpba.2023.115912
    Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  12. Zainol MI, Mohd Yusoff K, Mohd Yusof MY
    PMID: 23758747 DOI: 10.1186/1472-6882-13-129
    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  13. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  14. Toh SC, Lihan S, Bunya SR, Leong SS
    BMC Complement Med Ther, 2023 Mar 18;23(1):85.
    PMID: 36934252 DOI: 10.1186/s12906-023-03914-z
    BACKGROUND: Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical.

    AIM: In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS).

    RESULTS: Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p anti-inflammatory activities.

    CONCLUSION: Ethyl acetate crude extract was better than the other investigated solvents. The root and stem of C. alata showed significant antimicrobial efficacy against S. aureus in this study. The remaining 56 out of 88 phytochemicals of the plant should be intensively studied for more medicinal uses.

    Matched MeSH terms: Anti-Bacterial Agents/analysis
  15. Singh VA, Wei CC, Haseeb A, Shanmugam R, Ju CS
    J Orthop Surg (Hong Kong), 2019 2 26;27(1):2309499018822247.
    PMID: 30798727 DOI: 10.1177/2309499018822247
    PURPOSE: Bone cement is commonly used as a void filler for bone defects. Antibiotics can be added to bone cement to increase local drug delivery in eradicating infection. After antibiotic elution, nonbiodegradable material becomes an undesirable agent. The purpose of this study was to evaluate effects of addition of vancomycin on the compressive strength of injectable synthetic bone substitute, JectOS®. JectOS, a partially biodegradable cement that over time dissolves and is replaced by bone, could be potentially used as a biodegradable antibiotic carrier.

    METHODS: Vancomycin at various concentrations was added to JectOS and polymethyl methacrylate (PMMA). Then, the cement was molded into standardized dimensions for in vitro testing. Cylindrical vancomycin-JectOS samples were subjected to compressive strength. The results obtained were compared to PMMA-vancomycin compressive strength data attained from historical controls. The zone of inhibition was carried out using vancomycin-JectOS and vancomycin-PMMA disk on methicillin-resistant strain culture agar.

    RESULTS: With the addition of 2.5%, 5%, and 10% vancomycin, the average compressive strengths reduced to 8.01 ± 0.95 MPa (24.6%), 7.52 ± 0.71 MPa (29.2%), and 7.23 ± 1.34 MPa (31.9%). Addition of vancomycin significantly weakened biomechanical properties of JectOS, but there was no significant difference in the compressive strength at increasing concentrations. The average diameters of zone of inhibition for JectOS-vancomycin were 24.7 ± 1.44 (2.5%) mm, 25.9 ± 0.85 mm (5%), and 26.8 ± 1.81 mm (10%), which outperformed PMMA.

    CONCLUSION: JectOS has poor mechanical performance but superior elution property. JectOS-vancomycin cement is suitable as a void filler delivering high local concentration of vancomycin. We recommended using it for contained bone defects that do not require mechanical strength.

    Matched MeSH terms: Anti-Bacterial Agents/analysis
  16. Jalil RA
    J Nihon Univ Sch Dent, 1994 Dec;36(4):254-60.
    PMID: 7869127
    The study was conducted to determine thiocyanate (SCN-) and hypothiocyanite (OSCN-) concentrations in resting (RWS) and stimulated whole saliva (SWS) and stimulated parotid saliva (SPS) of 20 healthy young adults aged 21-29 y. Samples of saliva were collected at 12:30, immediately before lunch. Resting saliva was collected by expectoration, and stimulated saliva was collected during the uniform chewing of paraffin wax. Parotid secretion was collected using a modified Carlsson-Crittenden cup (Carlsson et al., Am, J. Physiol., 26, 169-177, 1910). SCN- concentration was determined by the ferric nitrate method (Betts et al., J. Am. Chem. Soc., 75, 5721-5727, 1953) whilst OSCN- was assayed using 2-mercaptoethanol as a reducing agent (Pruitt et al., Caries Res., 16, 315-323, 1982). In RWS, SWS and SPS, the mean SCN- concentrations (in mM) were 1.48 +/- 0.59(S.D.), 0.90 +/- 0.56(S.D.) and 1.24 +/- 0.65(S.D.) whilst the mean OSCN- concentrations (in microM) were 31.21 +/- 13.54(S.D.), 24.90 +/- 12.61 and 30.19 +/- 23.35(S.D.) in the respective salivas. The presence of OSCN- in the secretion collected from the parotid gland supported previous findings by Tenovuo and Pruitt (Tenovuo et al., J. Oral Path, ol. 13, 573-584, 1984), who suggested an endogenous glandular (eukaryotic) source of hydrogen peroxide (H2O2), since parotid saliva from healthy glands is devoid of bacteria and leukocytes.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  17. Shehzadi N, Hussain K, Khan MT, Salman M, Islam M
    Pak J Pharm Sci, 2017 Sep;30(5):1767-1777.
    PMID: 29084700
    The absence of chromophore and/or conjugated system, prerequisite for UV and florescent light detection, or absorbance at very low wavelength necessitates the development of simple and reliable methods for the determination of amikacin sulphate. Therefore, the present study describes for the first time dynamics of the drug derivatization using ninhydrin reagent and development and validation of a simple RP-HPLC method, using diode array detector (DAD). The variables such as heating time, heating type, drug-reagent ratio, reagent composition and storage temperature of the derivative were optimized. The analyte and aqueous ninhydrin solution upon heating for 2.00-5.00 min produced the colored drug-derivative which was stable for one month at refrigeration. The derivatized drug (20.00μL) was eluted through a column - Eclipse DB-C18 (5.00 µm, 4.60×150.00 mm), maintained at 25°C- using isocratic mobile phase comprising water and acetonitrile (70:30, v/v) at a flow rate of 1.00 mL/min, and detected at 400 nm. The method was found to be reliable (98.08-100.72% recovery), repeatable (98.02-100.72% intraday accuracy) and reproducible (98.47-101.27% inter day accuracy) with relative standard deviation less than 5%. The results of the present study indicate that the method is easy to perform, specific and sensitive, and suitable to be used for the determination of amikacin sulphate in bulk and pharmaceutical preparations using less expensive/laborious derivatization.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  18. Nasir ANM, Yahaya N, Zain NNM, Lim V, Kamaruzaman S, Saad B, et al.
    Food Chem, 2019 Mar 15;276:458-466.
    PMID: 30409620 DOI: 10.1016/j.foodchem.2018.10.044
    Thiol-functionalized magnetic carbon nanotubes (TMCNTs) were employed as the sorbent in the magnetic micro-solid phase extraction (M-µ-SPE) of sulfonamide antibiotics (SAs) in water, milks and chicken meat products prior to high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The synthesized sorbent was characterized by several spectroscopic techniques. Optimum conditions were: 20 mg of TMCNTs at pH 4, 2 min extraction time, 10% addition of salt and 30 mL of sample volume. Under the optimized TMCNTs-M-µ-SPE and HPLC-DAD conditions, the method showed good linearity in the range of 0.1-500 µg L-1 (r2 ≥ 0.9950), low limits of detection (0.02-1.5 µg L-1), good analytes recovery (80.7-116.2%) and acceptable RSDs (0.3-7.7%, n = 15). The method was applied to tap water (1), milks (15) and commercial chicken meat products (35), SAs were detected in five chicken meat samples (3.0-25.7 µg L-1). The method is critically compared to those reported in the literature.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  19. Chew YL, Chan EW, Tan PL, Lim YY, Stanslas J, Goh JK
    PMID: 21306653 DOI: 10.1186/1472-6882-11-12
    Many medicinal plants from Leguminosae family can be found easily in Malaysia. These plants have been used as traditional medicines by local ethnic groups, where they are prepared as decoction, pastes for wound infections, and some have been eaten as salad. This paper focused on the assessment of antioxidant potential, antibacterial activity and classes of phytochemicals of nine plants from the Leguminosae family.
    Matched MeSH terms: Anti-Bacterial Agents/analysis
  20. Ridzwan BH, Kaswandi MA, Azman Y, Fuad M
    Gen. Pharmacol., 1995 Nov;26(7):1539-43.
    PMID: 8690242
    1. Three species of sea cucumbers found in the Sabah coastal areas were screened for the presence of antibacterial activity using three methods of extraction. Tests were conducted in vitro using the agar absorption method. 2. Both the lipid extract and the methanol-solvent extract from Holothuria atra, Holothuria scabra and Bohadshia argus were found to show no antibacterial activity. 3. Phosphate-buffered saline (PBS) from H. atra and B. argus, however, inhibited the growth of all gram-positive and gram-negative bacteria. 4. Comparisons were also made between extracts from the outer layer of H. atra and its inner part, and it was found that the extract from the outer layer showed less bacterial growth inhibition property. 5. The bacterial growth inhibition property of the PBS extract from H. atra, however, is dependent on the extract's concentration. Bacterial growth inhibition was apparent after 48 hr incubation.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links