Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: Apatites/pharmacology
  2. Chahal S, Chalal S, Fathima SJ, Yusoff MB
    Biomed Mater Eng, 2014;24(1):799-806.
    PMID: 24211966 DOI: 10.3233/BME-130871
    In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
    Matched MeSH terms: Apatites/chemistry*
  3. Fazan F, Shahida KB
    Med J Malaysia, 2004 May;59 Suppl B:69-70.
    PMID: 15468823
    The paper presents a method of producing synthetic Hydroxyapatite (HA) Ca10(PO4)6(OH)2 and other apatites for biological use by solid-state reaction. The solid-state reaction involves mix-grinding dry powders of beta-tricalcium phosphate powder (TCP) and either calcium hydroxide (Ca(OH)2) or calcium carbonate (CaCO3) or combination thereof, from pure commercial chemicals or derived from natural limestone or from seashells, of total calcium/phosphorus molar ratio between 1.5 to 2.0, to particle size of less than 10 microns, and firing the resultant powder to temperature between 600 degrees C - 1250 degrees C in atmosphere or in controlled atmospheric condition. The resultant apatites formed were characterised using XRD, SEM-EDX and FTIR. The presented reaction process was found to be much simpler compared to conventional methods of producing synthetic apatites since it involves only dry mix-grinding of the reactants before firing at high temperatures based on the required levels of purity. It can also produce synthetic apatites with good reproducibility in a shorter time. Thus the presented method has a great industrial value.
    Matched MeSH terms: Apatites/analysis; Apatites/chemical synthesis*
  4. Saarani NN, Jamuna-Thevi K, Shahab N, Hermawan H, Saidin S
    Dent Mater J, 2017 May 31;36(3):260-265.
    PMID: 28111388 DOI: 10.4012/dmj.2016-177
    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.
    Matched MeSH terms: Apatites
  5. Mohd Daud N, Hussein Al-Ashwal R, Abdul Kadir MR, Saidin S
    Ann. Anat., 2018 Nov;220:29-37.
    PMID: 30048761 DOI: 10.1016/j.aanat.2018.06.009
    Immobilization of chlorhexidine (CHX) on stainless steel 316L (SS316L), assisted by a polydopamine film as an intermediate layer is projected as an approach in combating infection while aiding bone regeneration for coating development on orthopedic and dental implants. This study aimed to investigate the ability of CHX coating to promote apatite layer, osteoblast cells viability, adhesion, osteogenic differentiation and mineralization. Stainless steel 316L disks were pre-treated, grafted with a polydopamine film and immobilized with different concentrations of CHX (10-30mM). The apatite layer formation was determined through an in vitro simulated body fluid (SBF) test by ATR-FTIR and SEM-EDX analyses. The osteoblastic evaluations including cells viability, cells adhesion, osteogenic differentiation and mineralization were assessed with human fetal osteoblast cells through MTT assay, morphology evaluation under FESEM, ALP enzyme activity and Alizarin Red S assay. The apatite layer was successfully formed on the CHX coated disks, demonstrating potential excellent bioactivity property. The CHX coatings were biocompatible with the osteoblast cells at low CHX concentration (<20mM) with good adhesion on the metal surfaces. The increment of ALP activity and calcium deposition testified that the CHX coated disks able to support osteoblastic maturation and mineralization. These capabilities give a promising value to the CHX coating to be implied in bone regeneration area.
    Matched MeSH terms: Apatites/chemistry*
  6. Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI
    ScientificWorldJournal, 2013;2013:272409.
    PMID: 24288473 DOI: 10.1155/2013/272409
    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg(-1)), plant P uptake (0.78 P pot(-1)), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g(-1)) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.
    Matched MeSH terms: Apatites/metabolism; Apatites/chemistry
  7. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, et al.
    Biomed Mater, 2015 Aug;10(4):045011.
    PMID: 26225725 DOI: 10.1088/1748-6041/10/4/045011
    Interconnected porous tricalcium phosphate ceramics are considered to be potential bone substitutes. However, insufficient mechanical properties when using tricalcium phosphate powders remain a challenge. To mitigate these issues, we have developed a new approach to produce an interconnected alpha-tricalcium phosphate (α-TCP) scaffold and to perform surface modification on the scaffold with a composite layer, which consists of hybrid carbonate apatite / poly-epsilon-caprolactone (CO3Ap/PCL) with enhanced mechanical properties and biological performance. Different CO3Ap combinations were tested to evaluate the optimal mechanical strength and in vitro cell response of the scaffold. The α-TCP scaffold coated with CO3Ap/PCL maintained a fully interconnected structure with a porosity of 80% to 86% and achieved an improved compressive strength mimicking that of cancellous bone. The addition of CO3Ap coupled with the fully interconnected microstructure of the α-TCP scaffolds coated with CO3Ap/PCL increased cell attachment, accelerated proliferation and resulted in greater alkaline phosphatase (ALP) activity. Hence, our bone substitute exhibited promising potential for applications in cancellous bone-type replacement.
    Matched MeSH terms: Apatites/chemistry
  8. Ballouze R, Marahat MH, Mohamad S, Saidin NA, Kasim SR, Ooi JP
    J Biomed Mater Res B Appl Biomater, 2021 Oct;109(10):1426-1435.
    PMID: 33484103 DOI: 10.1002/jbm.b.34802
    Autologous bone grafting remains the gold standard for almost all bone void-filling orthopedic surgery. However, autologous bone grafting has several limitations, thus scientists are trying to identify an ideal synthetic material as an alternative bone graft substitute. Magnesium-doped biphasic calcium phosphate (Mg-BCP) has recently been in the spotlight and is considered to be a potential bone substitute. The Mg-BCP is a mixture of two bioceramics, that is, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), doped with Mg2+ , and can be synthesized through chemical wet-precipitation, sol-gel, single diffusion gel, and solid state reactions. Regardless of the synthesis routes, it is found that the Mg2+ preferentially accommodates in β-TCP lattice instead of the HA lattice. The addition of Mg2+ to BCP leads to desirable physicochemical properties and is found to enhance the apatite-forming ability as compared to pristine BCP. In vitro results suggest that the Mg-BCP is bioactive and not toxic to cells. Implantation of Mg-BCP in in vivo models further affirmed its biocompatibility and efficacy as a bone substitute. However, like the other bioceramics, the optimum physicochemical properties of the Mg-BCP scaffold have yet to be determined. Further investigations are required regarding Mg-BCP applications in bone tissue engineering.
    Matched MeSH terms: Apatites/chemistry; Hydroxyapatites/chemistry*
  9. Miyazaki T, Akaike J, Kawashita M, Lim HN
    PMID: 30889741 DOI: 10.1016/j.msec.2019.01.091
    Nanocomposites of magnetite (Fe3O4) and reduced graphene oxide (rGO) generate heat under an alternating magnetic field and therefore have potential applications as thermoseeds for cancer hyperthermia treatment. However, the properties of such nanocomposites as biomaterials have not been sufficiently well characterized. In this study, the osteoconductivity of Fe3O4-rGO nanocomposites of various compositions was evaluated in vitro in terms of their apatite-forming ability in simulated body fluid (SBF). Furthermore, the heat generation of the nanocomposites was measured under an alternating magnetic field. The apatite-forming ability in SBF improved as the Fe3O4 content in the nanocomposite was increased. As the Fe3O4 content was increased, the nanocomposite not only rapidly raised the surrounding temperature to approximately 100 °C, but the specific absorption rate also increased. We assumed that the ionic interaction between the Fe3O4 and rGO was enhanced and that Brown relaxation was suppressed as the proportion of rGO in the nanocomposite was increased. Consequently, a high content of Fe3O4 in the nanocomposite was effective for improving both the osteoconductivity and heat generation characteristics for hyperthermia applications.
    Matched MeSH terms: Apatites/chemistry*
  10. Wan Jusoh WN, Matori KA, Mohd Zaid MH, Zainuddin N, Ahmad Khiri MZ, Abdul Rahman NA, et al.
    Materials (Basel), 2021 Feb 18;14(4).
    PMID: 33670465 DOI: 10.3390/ma14040954
    Glass ionomer cement (GIC) is a well-known restorative material applied in dentistry. The present work aims to study the effect of hydroxyapatite (HA) addition into GIC based on physical, mechanical and structural properties. The utilization of waste materials namely clam shell (CS) and soda lime silica (SLS) glass as replacements for the respective CaO and SiO2 sources in the fabrication of alumino-silicate-fluoride (ASF) glass ceramics powder. GIC was formulated based on ASF glass ceramics, polyacrylic acid (PAA) and deionized water, while 1 wt.% of HA powder was added to enhance the properties of the cement samples. The cement samples were subjected to four different ageing times before being analyzed. In this study, the addition of HA caused an increment in density and compressive strength results along with ageing time. Besides, X-ray Diffraction (XRD) revealed the formation of fluorohydroxyapatite (FHA) phase in HA-added GIC samples and it was confirmed by Fourier Transform Infrared (FTIR) analysis which detected OH‒F vibration mode. In addition, needle-like and agglomeration of spherical shapes owned by apatite crystals were observed from Field Emission Scanning Electron Microscopy (FESEM). Based on Energy Dispersive X-ray (EDX) analysis, the detection of chemical elements in the cement samples were originated from chemical compounds used in the preparation of glass ceramics powder and also the polyacid utilized in initiating the reaction of GIC.
    Matched MeSH terms: Apatites; Hydroxyapatites
  11. Kokubo T
    Med J Malaysia, 2004 May;59 Suppl B:91-2.
    PMID: 15468833
    Metallic materials implanted into bone defects are generally encapsulated by a fibrous tissue. Some metallic materials such as titanium and tantalum, however, have been revealed to bond to the living bone without forming the fibrous tissue, when they were subjected to NaOH solution and heat treatments. Thus treated metals form bone tissue around them even in muscle, when they take a porous form. This kind of osteoconductive and osteoinductive properties are attributed to sodium titanate or tantalate layer on their surfaces formed by the NaOH and heat treatments. These layers induce the deposition of bonelike apatite on the surface of the metals in the living body. This kind of bioactive metals are useful as bone substitutes even highly loaded portions, such as hip joint, spine and tooth root.
    Matched MeSH terms: Apatites/metabolism*
  12. Daood U, Bandey N, Qasim SB, Omar H, Khan SA
    Acta Odontol Scand, 2011 Nov;69(6):367-73.
    PMID: 21449690 DOI: 10.3109/00016357.2011.569507
    To investigate the failure of 15 dental implants (Paragon/Zimmer) in relation to their surface quality.
    Matched MeSH terms: Apatites/analysis
  13. Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, et al.
    PLoS One, 2019;14(3):e0214212.
    PMID: 30917166 DOI: 10.1371/journal.pone.0214212
    It has been demonstrated that nanocrystalline forsterite powder synthesised using urea as a fuel in sol-gel combustion method had produced a pure forsterite (FU) and possessed superior bioactive characteristics such as bone apatite formation and antibacterial properties. In the present study, 3D-scaffold was fabricated using nanocrystalline forsterite powder in polymer sponge method. The FU scaffold was used in investigating the physicochemical, biomechanics, cell attachment, in vitro biocompatibility and osteogenic differentiation properties. For physicochemical characterisation, Fourier-transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoemission spectrometer (XPS) and Brunauer-Emmett-Teller (BET) were used. FTIR, EDX, XRD peaks and Raman spectroscopy demonstrated correlating to FU. The XPS confirmed the surface chemistry associating to FU. The BET revealed FU scaffold surface area of 12.67 m2/g and total pore size of 0.03 cm3/g. Compressive strength of the FU scaffold was found to be 27.18 ± 13.4 MPa. The human bone marrow derived mesenchymal stromal cells (hBMSCs) characterisation prior to perform seeding on FU scaffold verified the stromal cell phenotypic and lineage commitments. SEM, confocal images and presto blue viability assay suggested good cell attachment and proliferation of hBMSCs on FU scaffold and comparable to a commercial bone substitutes (cBS). Osteogenic proteins and gene expression from day 7 onward indicated FU scaffold had a significant osteogenic potential (p<0.05), when compared with day 1 as well as between FU and cBS. These findings suggest that FU scaffold has a greater potential for use in orthopaedic and/or orthodontic applications.
    Matched MeSH terms: Apatites/metabolism
  14. Ibrahim S, Sabudin S, Sahid S, Marzuke MA, Hussin ZH, Kader Bashah NS, et al.
    Saudi J Biol Sci, 2016 Jan;23(1):S56-63.
    PMID: 26858566 DOI: 10.1016/j.sjbs.2015.10.024
    Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material's surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si-BCP's surface roughness (164 nm) was significantly higher than BCP (88 nm), thus enhancing the adhesion and proliferation of the osteoblast.
    Matched MeSH terms: Apatites; Hydroxyapatites
  15. Jamuna, K., Noorsal, K., Zakaria, F.A., Hussin, Z.H.
    ASM Science Journal, 2010;4(1):41-47.
    MyJurnal
    Introducing CO2 flux as the carbonate source had an effect on the carbonate content of carbonate apatite (CAp) synthesized by solid state reaction. The reactants were CaCO3 and beta-tricalcium phosphate (β-TCP) and the heat treatment in air was performed at 1250ºC followed by instant cooling in CO2 flux for temperatures ranging from 800ºC room temperature (RT) . The influence of CO2 flux at various temperature drop differences in the cooling process (1250ºC RT, 1250ºC–500ºC, 1250ºC–600ºC, 1250ºC–700ºC, and 1250ºC–800ºC) was tested to optimize the carbonation degree and subsequent effects on the physical and mechanical properties of CAp. Thermally treated samples revealed an increasing degree of carbonation, achieving a maximum of 5.2 wt% at the highest (1250ºC RT) and a minimum of 2.7 wt% at the lowest (1250ºC–800ºC) temperature drop differences, respectively. This showed that the carbonate content was correlated with the increase in exposure to CO2 flux. However, consistent compressive strength, tensile strength, density and porosity were observed against increasing temperature drop differences which indicated that the degree of carbonation exerted no influence on the physical and mechanical properties of CAp. This method enabled the synthesis of solid state CAp simply by exposing calcium phosphate mixtures to CO2 flux. It also allowed the control of carbonate content for desired medical applications.
    Matched MeSH terms: Apatites
  16. Zainuddin N, Karpukhina N, Law RV, Hill RG
    Dent Mater, 2012 Oct;28(10):1051-8.
    PMID: 22841162 DOI: 10.1016/j.dental.2012.06.011
    The purpose of this study was to characterize commercial glass polyalkenoate cement (GPC) or glass ionomer cement (GIC), Glass Carbomer(®), which is designed to promote remineralization to fluorapatite (FAp) in the mouth. The setting reaction of the cement was followed using magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy.
    Matched MeSH terms: Apatites/analysis*
  17. Jamuna-Thevi K, Saarani NN, Abdul Kadir MR, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:253-63.
    PMID: 25175212 DOI: 10.1016/j.msec.2014.07.028
    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents.
    Matched MeSH terms: Apatites/chemistry*
  18. Tiash S, Chowdhury ME
    Curr Pharm Des, 2016;22(37):5752-5759.
    PMID: 26864311
    Despite being widely used for treating cancer, chemotherapy is accompanied by numerous adverse effects as a result of systemic distribution and nonspecific interactions of the drugs with healthy tissues, eventually leading to therapeutic inefficacy and chemoresistance. Cyclophosphamide (Cyp) as one of the chemotherapeutic pro-drugs is activated in liver and used to treat breast cancer in high dose and in combination with other drugs. In an attempt to reduce the off-target effects and enhance the therapeutic efficacy, pH-sensitive carbonate apatite nanoparticles that had predominantly and size-dependently been localized in liver following intravenous administration, were employed to electrostatically immobilize Cyp and purposely deliver it to the liver for activation. Cyp-loaded particles formed by simple 30 min incubation at 37ºC of the DMEM (pH 7.4) medium containing CaCl2 and Cyp, enhanced in vitro cytotoxicity at different degrees depending on the cell types. The size of the particles could be tightly controlled by the amount of CaCl2 required to prepare the particles and thus the bio-distribution pattern inside different organs of the body. Unlike the small particles (~ 200 nm), the large size particles (~ 600 nm) which were more efficiently accumulated in liver, significantly reduced the tumor volume following intravenous injection in 4T1-induced murine breast cancer model at a very low dose (0.17 mg/Kg) of the drug initially added for complex formation, thus shedding light on the potential applications of the Cyp-loaded nano-formulations in the treatment of breast cancer.
    Matched MeSH terms: Apatites/chemistry*
  19. Mozar FS, Chowdhury EH
    Curr Drug Deliv, 2015;12(3):333-41.
    PMID: 25600981
    Substantial amount of research has been done in recent decades for the development of nanoparticle systems to selectively deliver drugs to cancer cells for concurrently enhancing and reducing anti-cancer and off-target effects, respectively. pH-sensitive carbonate apatite (CA) was originally developed for efficient and targeted delivery of DNA, siRNA and proteins to various cancer cell lines. Recently, the CA particles were employed to deliver anti-cancer drugs, cyclophosphamide, doxorubicin and methotrexate to cancer cells. Here, we report on the fabrication and characterization of gemcitabine- loaded CA particles, followed by the evaluation of their roles in enhancement of cytotoxicity in two human and one murine breast cancer cell lines. HPLC was performed to measure binding efficiency of the drug to the apatite particles whereas particle size and zeta potential were evaluated to characterize drug/apatite complex. Depending on the initial doses of the drug, its bind binding affinity towards the particles varied from 3.85% to 4.45%. The particle size was found to surprisingly decrease with an increase of the initial drug concentration. In vitro chemosensitivity assay revealed that apatite/drug nanoparticle complexes presented significantly higher cytotoxicity to breast cancer cells compared to free drugs, which could be correlated with the enhanced cellular uptake of the small size drug-loaded particles through endocytosis compared to the passive diffusion of the free drug.
    Matched MeSH terms: Apatites/chemistry*
  20. Tiash S, Othman I, Rosli R, Chowdhury EH
    Curr Drug Deliv, 2014;11(2):214-22.
    PMID: 24328684
    Most of the classical drugs used today to destroy cancer cells lead to the development of acquired resistance in those cells by limiting cellular entry of the drugs or exporting them out by efflux pumps. As a result, higher doses of drugs are usually required to kill the cancer cells affecting normal cells and causing numerous side effects. Accumulation of the therapeutic level of drugs inside the cancer cells is thus required for an adequate period of time to get drugs' complete therapeutic efficacy minimizing the side effects on normal cells. In order to improve the efficacy of chemotherapeutic drugs, nanoparticles of carbonate apatite and its strontium (Sr(2+))-substituted derivative were used in this study to make complexes with three classical anticancer drugs, methotrexate, cyclophosphamide and 5-flurouracil. The binding affinities of these drugs to apatite were evaluated by absorbance and HPLC analysis and the therapeutic efficacy of drug-apatite complexes was determined by cell viability assay. Carbonate apatite demonstrated significant binding affinity towards methotrexate and cyclophosphamide leading to more cellular toxicity than free drugs in MCF-7 and 4T1 breast cancer cells. Moreover, Sr(2+) substitution in carbonate apatite with resulting tiny particles less than 100 nm in diameter further promoted binding of methotrexate to the nanocarriers indicating that Sr(2+)-substituted apatite nanoparticles have the high potential for loading substantial amount of anti-cancer drugs with eventual more therapeutic effectiveness.
    Matched MeSH terms: Apatites/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links