Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Acquah C, Danquah MK, Yon JL, Sidhu A, Ongkudon CM
    Anal Chim Acta, 2015 Aug 12;888:10-8.
    PMID: 26320953 DOI: 10.1016/j.aca.2015.05.050
    The discovery of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has led to the generation of aptamers from libraries of nucleic acids. Concomitantly, aptamer-target recognition and its potential biomedical applications have become a major research endeavour. Aptamers possess unique properties that make them superior biological receptors to antibodies with a plethora of target molecules. Some specific areas of opportunities explored for aptamer-target interactions include biochemical analysis, cell signalling and targeting, biomolecular purification processes, pathogen detection and, clinical diagnosis and therapy. Most of these potential applications rely on the effective immobilisation of aptamers on support systems to probe target species. Hence, recent research focus is geared towards immobilising aptamers as oligosorbents for biodetection and bioscreening. This article seeks to review advances in immobilised aptameric binding with associated successful milestones and respective limitations. A proposal for high throughput bioscreening using continuous polymeric adsorbents is also presented.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
  2. Prabu SS, Ch'ng ES, Woon PY, Chen JH, Tang TH, Citartan M
    Anal Chim Acta, 2020 Nov 22;1138:181-190.
    PMID: 33161980 DOI: 10.1016/j.aca.2020.09.038
    Human Pituitary Tumour Transforming Gene 1 (PTTG1) is an oncoprotein involved in maintaining chromosome stability and acts as a biomarker for a panel of cancers. In this study, we endeavoured to generate an RNA aptamer against PTTG1. The RNA aptamer, SECURA-3 has an estimated equilibrium dissociation constant of 16.41 ± 6.4 nM. The aptamer was successfully harnessed in several diagnostic platforms including ELASA, aptamer-based dot blot and aptamer-based western blot. SECURA-3 was also unveiled as a potential probe that could replace its counterpart antibody in the histostaining-based detection of PTTG1 in HeLa and MCF-7 formalin-fixed paraffin-embedded cell blocks. In the aspect of therapeutics, SECURA-3 RNA aptamer demonstrates an antagonistic effect by antagonizing the interaction between PTTG1 and CXCR2, as revealed in the in vitro competitive nitrocellulose filter binding assay and dual-luciferase reporter assay in HeLa cells. As the first anti-PTTG1 aptamer, SECURA-3 RNA aptamer has immense diagnostic and therapeutic properties.
    Matched MeSH terms: Aptamers, Nucleotide*
  3. Lee ST, Beaumont D, Su XD, Muthoosamy K, New SY
    Anal Chim Acta, 2018 Jun 20;1010:62-68.
    PMID: 29447672 DOI: 10.1016/j.aca.2018.01.012
    Single strand DNA (ssDNA) chimeras consisting of a silver nanoclusters-nucleating sequence (NC) and an aptamer are widely employed to synthesize functional silver nanoclusters (AgNCs) for sensing purpose. Despite its simplicity, this chimeric-templated AgNCs often leads to undesirable turn-off effect, which may suffer from false positive signals caused by interference. In our effort to elucidate how the relative position of NC and aptamer affects the fluorescence behavior and sensing performance, we systematically formulated these NC and aptamer regions at different position in a DNA chimera. Using adenosine aptamer as a model, we tested the adenosine-induced optical response of each design. We also investigated the effect of linker region connecting NC and aptamer, as well as different NC sequence on the sensing performance. We concluded that locating NC sequence at 5'-end exhibited the best response, with immediate fluorescence enhancement observed over a wide linear range (1-2500 μM). Our experimental findings help to explain the emission behavior and sensing performance of chimeric conjugates of AgNCs, providing an important means to formulate a better aptasensor.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry
  4. Azri FA, Selamat J, Sukor R, Yusof NA, Raston NHA, Eissa S, et al.
    Anal Bioanal Chem, 2021 Jun;413(15):3861-3872.
    PMID: 34021369 DOI: 10.1007/s00216-021-03336-1
    Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.
    Matched MeSH terms: Aptamers, Nucleotide/analysis*; Aptamers, Nucleotide/chemistry
  5. Muniandy S, Dinshaw IJ, Teh SJ, Lai CW, Ibrahim F, Thong KL, et al.
    Anal Bioanal Chem, 2017 Nov;409(29):6893-6905.
    PMID: 29030671 DOI: 10.1007/s00216-017-0654-6
    Reduced graphene oxide (rGO) has emerged as a promising nanomaterial for reliable detection of pathogenic bacteria due to its exceptional properties such as ultrahigh electron transfer ability, large surface to volume ratio, biocompatibility, and its unique interactions with DNA bases of the aptamer. In this study, rGO-azophloxine (AP) nanocomposite aptasensor was developed for a sensitive, rapid, and robust detection of foodborne pathogens. Besides providing an excellent conductive and soluble rGO nanocomposite, the AP dye also acts as an electroactive indicator for redox reactions. The interaction of the label-free single-stranded deoxyribonucleic acid (ssDNA) aptamer with the test organism, Salmonella enterica serovar Typhimurium (S. Typhimurium), was monitored by differential pulse voltammetry analysis, and this aptasensor showed high sensitivity and selectivity for whole-cell bacteria detection. Under optimum conditions, this aptasensor exhibited a linear range of detection from 108 to 101 cfu mL-1 with good linearity (R 2 = 0.98) and a detection limit of 101 cfu mL-1. Furthermore, the developed aptasensor was evaluated with non-Salmonella bacteria and artificially spiked chicken food sample with S. Typhimurium. The results demonstrated that the rGO-AP aptasensor possesses high potential to be adapted for the effective and rapid detection of a specific foodborne pathogen by an electrochemical approach. Graphical abstract Fabrication of graphene-based nanocomposite aptasensor for detection of foodborne pathogen.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry
  6. Agyei D, Acquah C, Tan KX, Hii HK, Rajendran SRCK, Udenigwe CC, et al.
    Anal Bioanal Chem, 2018 Jan;410(2):297-306.
    PMID: 28884330 DOI: 10.1007/s00216-017-0599-9
    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (Kd) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
  7. Hasan MR, Pulingam T, Appaturi JN, Zifruddin AN, Teh SJ, Lim TW, et al.
    Anal Biochem, 2018 08 01;554:34-43.
    PMID: 29870692 DOI: 10.1016/j.ab.2018.06.001
    In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM). Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate the electrochemical properties and conductivity of the aptasensor. The results showed that the impedance measured at the ssDNA/MWCNT/ITO electrode surface increased after exposure to Salmonella cells, which indicated successful binding of Salmonella on the aptamer-functionalised surface. The developed ssDNA/MWCNT/ITO aptasensor was stable and maintained linearity when the scan rate was increased from 10 mV s-1 to 90 mV s-1. The detection limit of the ssDNA/MWCNT/ITO aptasensor, determined from the sensitivity analysis, was found to be 5.5 × 101 cfu mL-1 and 6.7 × 101 cfu mL-1 for S. Enteritidis and S. Typhimurium, respectively. The specificity test demonstrated that Salmonella bound specifically to the ssDNA/MWCNT/ITO aptasensor surface, when compared with non-Salmonella spp. The prepared aptasensor was successfully applied for the detection of Salmonella in food samples.
    Matched MeSH terms: Aptamers, Nucleotide
  8. Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF
    Anal Biochem, 2020 01 15;589:113489.
    PMID: 31655050 DOI: 10.1016/j.ab.2019.113489
    Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
    Matched MeSH terms: Aptamers, Nucleotide
  9. Tuma Sabah J, Zulkifli RM, Shahir S, Ahmed F, Abdul Kadir MR, Zakaria Z
    Anal Biochem, 2018 05 15;549:72-79.
    PMID: 29524380 DOI: 10.1016/j.ab.2018.03.004
    Distinctive bioactivities possessed by luteolin (3', 4', 5, 7-tetrahydroxy-flavone) are advantageous for sundry practical applications. This paper reports the in vitro selection and characterization of single stranded-DNA (ssDNA) aptamers, specific for luteolin (LUT). 76-mer library containing 1015 randomized ssDNA were screened via systematic evolution of ligands by exponential enrichment (SELEX). The recovered ssDNA pool from the 8th round was amplified with unlabeled primers and cloned into PSTBlue-1 vector prior to sequencing. 22 of LUT-binding aptamer variants were further classified into one of the seven groups based on their N40 random sequence regions, wherein one representative from each group was characterized. The dissociation constant of aptamers designated as LUT#28, LUT#20 and LUT#3 was discerned to be 107, 214 and 109 nM, respectively with high binding affinity towards LUT. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Furthermore, LUT#3 displayed higher specificity with insignificant binding toward kaempferol and quercetin despite its structural and functional similarity compared to LUT#28 and LUT#20. Further LUT#3 can detect free luteolin within 0.2-1 mM in solution. It was suggested that LUT#3 aptamer were the most suitable for LUT recognition tool at laboratory scale based on the condition tested.
    Matched MeSH terms: Aptamers, Nucleotide/chemical synthesis; Aptamers, Nucleotide/chemistry
  10. Gopinath SC, Lakshmipriya T, Chen Y, Arshad MK, Kerishnan JP, Ruslinda AR, et al.
    Appl Microbiol Biotechnol, 2016 Aug;100(16):6955-69.
    PMID: 27350620 DOI: 10.1007/s00253-016-7686-2
    Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.
    Matched MeSH terms: Aptamers, Nucleotide/metabolism*
  11. Gu Y, Liu L, Guo J, Xiao S, Fang F, Yu X, et al.
    Artif Cells Nanomed Biotechnol, 2021 Dec;49(1):30-37.
    PMID: 33467925 DOI: 10.1080/21691401.2020.1865992
    This research is focussed to quantify IGF1 by electroanalytical analysis on InterDigitated electrode surface and characterized by the microscopic observations. For the detection, antibody and aptamer were used to analyze the level of IGF1. The sandwich pattern (aptamer-IGF1-antibody) was designed on the chemically modified IDE surface and reached the limit of detection to 10 fM with 100 folds enhancement in the sensitivity. Different control experiments (absence of IGF1, binding with IGF2 and with non-complementary aptamer) were failed to show the current changes, discriminated the specific detection. A good detection strategy is to complement the currently following imaging systems for AAA.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
  12. Navien TN, Thevendran R, Hamdani HY, Tang TH, Citartan M
    Biochimie, 2020 Oct 18;180:54-67.
    PMID: 33086095 DOI: 10.1016/j.biochi.2020.10.005
    Aptamers are single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit binding affinity and specificity against a wide variety of target molecules. Compared to RNA aptamers, DNA aptamers are much more stable and therefore are widely adopted in a number of applications especially in diagnostics. The tediousness and rigor associated with certain steps of the SELEX intensify the efforts to adopt in silico molecular docking approaches together with in vitro SELEX procedures in developing DNA aptamers. Inspired by these endeavors, we carry out an overview of the in silico molecular docking approaches in DNA aptamer generation, by detailing the stepwise procedures as well as shedding some light on the various softwares used. The in silico maturation strategy and the limitations of the in silico approaches are also underscored.
    Matched MeSH terms: Aptamers, Nucleotide
  13. Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, et al.
    Bioelectrochemistry, 2019 Jun;127:136-144.
    PMID: 30825657 DOI: 10.1016/j.bioelechem.2019.02.005
    Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO2) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO2 nanocomposite matrix through electrostatic interactions. The changes in electrical conductivity on the electrode surface were evaluated using electroanalytical methods. DNA aptamer adsorbed on the rGO-TiO2 surface bound to the bacterial cells at the electrode interface causing a physical barrier inhibiting the electron transfer. This interaction decreased the DPV signal of the electrode proportional to decreasing concentrations of the bacterial cells. The optimized aptasensor exhibited high sensitivity with a wide detection range (108 to 101 cfu mL-1), a low detection limit of 101 cfu mL-1 and good selectivity for Salmonella bacteria. This rGO-TiO2 aptasensor is an excellent biosensing platform that offers a reliable, rapid and sensitive alternative for foodborne pathogen detection.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
  14. Tan KX, Lau SY, Danquah MK
    Biomed Pharmacother, 2018 May;101:996-1002.
    PMID: 29635910 DOI: 10.1016/j.biopha.2018.03.052
    Targeted drug delivery is a promising strategy to promote effective delivery of conventional and emerging pharmaceuticals. The emergence of aptamers as superior targeting ligands to direct active drug molecules specifically to desired malignant cells has created new opportunities to enhance disease therapies. The application of biodegradable polymers as delivery carriers to develop aptamer-navigated drug delivery system is a promising approach to effectively deliver desired drug dosages to target cells. This study reports the development of a layer-by-layer aptamer-mediated drug delivery system (DPAP) via a w/o/w double emulsion technique homogenized by ultrasonication or magnetic stirring. Experimental results showed no significant differences in the biophysical characteristics of DPAP nanoparticles generated using the two homogenization techniques. The DPAP formulation demonstrated a strong targeting performance and selectivity towards its target receptor molecules in the presence of non-targets. The DPAP formulation demonstrated a controlled and sustained drug release profile under the conditions of pH 7 and temperature 37 °C. Also, the drug release rate of DPAP formulation was successfully accelerated under an endosomal acidic condition of ∼pH 5.5, indicating the potential to enhance drug delivery within the endosomal micro-environment. The findings from this work are useful to understanding polymer-aptamer-drug relationship and their impact on developing effective targeted delivery systems.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
  15. Shien Yeoh T, Yusof Hazrina H, Bukari BA, Tang TH, Citartan M
    Bioorg Med Chem, 2023 Mar 01;81:117186.
    PMID: 36812779 DOI: 10.1016/j.bmc.2023.117186
    Leptospirosis is a potentially life-threatening zoonosis caused by pathogenic Leptospira. The major hurdle of the diagnosis of Leptospirosis lies in the issues associated with current methods of detection, which are time-consuming, tedious and the need for sophisticated, special equipments. Restrategizing the diagnostics of Leptospirosis may involve considerations of the direct detection of the outer membrane protein, which can be faster, cost-saving and require fewer equipments. One such promising marker is LipL32, which is an antigen with high amino acid sequence conservation among all the pathogenic strains. In this study, we endeavored to isolate an aptamer against LipL32 protein via a modified SELEX strategy known as tripartite-hybrid SELEX, based on 3 different partitioning strategies. In this study, we also demonstrated the deconvolution of the candidate aptamers by using in-house Python-aided unbiased data sorting in examining multiple parameters to isolate potent aptamers. We have successfully generated an RNA aptamer against LipL32 of Leptospira, LepRapt-11, which is applicable in a simple direct ELASA for the detection of LipL32. LepRapt-11 can be a promising molecular recognition element for the diagnosis of leptospirosis by targeting LipL32.
    Matched MeSH terms: Aptamers, Nucleotide*
  16. Sabri MZ, Hamid AAA, Hitam SMS, Rahim MZA
    Biophys Chem, 2020 12;267:106492.
    PMID: 33035750 DOI: 10.1016/j.bpc.2020.106492
    Aptamers are oligonucleotides and peptides around 15-100 bases in length and are suitable as detection probes or as therapeutics molecules. There are growing interests in the aptamer screening approach through computational simulation methods. DNA and RNA modelling lacks of validation on their predicted 3D structures due to less number of validation tools, unlike protein structures. We suggest an approach to design the stem-loop/hairpin for the three dimensional structure of DNA aptamers through serial applications of computational prediction methods by comparing the simulated structures with the experimental data deposited in PDB Data bank, followed by MD simulations. The result shows minimal structural differences were observed between the designed and the original NMR aptamers, and the stem-loop conformational structures were also retained during the MD thus suggesting the proposed aptamers designing methods are able to synthesize a high quality molecular structure of hairpin aptamers, comparable to the NMR structures.
    Matched MeSH terms: Aptamers, Nucleotide
  17. Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF, et al.
    Biosensors (Basel), 2021 Sep 18;11(9).
    PMID: 34562936 DOI: 10.3390/bios11090346
    Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
    Matched MeSH terms: Aptamers, Nucleotide
  18. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al.
    Biosensors (Basel), 2022 Oct 25;12(11).
    PMID: 36354431 DOI: 10.3390/bios12110922
    Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
    Matched MeSH terms: Aptamers, Nucleotide*
  19. Toh SY, Citartan M, Gopinath SC, Tang TH
    Biosens Bioelectron, 2015 Feb 15;64:392-403.
    PMID: 25278480 DOI: 10.1016/j.bios.2014.09.026
    The application of antibodies in enzyme-linked immunosorbent assay (ELISA) is the basis of this diagnostic technique which is designed to detect a potpourri of complex target molecules such as cell surface antigens, allergens, and food contaminants. However, development of the systematic evolution of Ligands by Exponential Enrichment (SELEX) method, which can generate a nucleic acid-based probe (aptamer) that possess numerous advantages compared to antibodies, offers the possibility of using aptamers as an alternative molecular recognition element in ELISA. Compared to antibodies, aptamers are smaller in size, can be easily modified, are cheaper to produce, and can be generated against a wide array of target molecules. The application of aptamers in ELISA gives rise to an ELISA-derived assay called enzyme-linked apta-sorbent assay (ELASA). As with the ELISA method, ELASA can be used in several different configurations, including direct, indirect, and sandwich assays. This review provides an overview of the strategies involved in aptamer-based ELASA.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
  20. Citartan M, Gopinath SC, Tominaga J, Tan SC, Tang TH
    Biosens Bioelectron, 2012 Apr 15;34(1):1-11.
    PMID: 22326894 DOI: 10.1016/j.bios.2012.01.002
    Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links