Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Arushothy R, Ahmad N
    Trop Biomed, 2008 Dec;25(3):259-61.
    PMID: 19287368
    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia.
    Matched MeSH terms: Bacterial Toxins/genetics*
  2. Gharamah AA, Moharram AM, Ismail MA, Al-Hussaini AK
    Indian J Ophthalmol, 2014 Feb;62(2):196-203.
    PMID: 24008795 DOI: 10.4103/0301-4738.116463
    This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents.
    Matched MeSH terms: Bacterial Toxins/metabolism*
  3. Hindley J, Berry C
    Nucleic Acids Res, 1988 May 11;16(9):4168.
    PMID: 3375083
    Matched MeSH terms: Bacterial Toxins/genetics*
  4. Surya W, Chooduang S, Choong YK, Torres J, Boonserm P
    PLoS One, 2016;11(6):e0158356.
    PMID: 27341696 DOI: 10.1371/journal.pone.0158356
    The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. An activation step shortens both subunits BinA and BinB before their interaction with membranes and internalization in midgut cells, but the precise role of this activation step is unknown. Herein, we show conclusively using three orthogonal biophysical techniques that protoxin subunits form only monomers in aqueous solution. However, in vitro activated toxins readily form heterodimers. This oligomeric state did not change after incubation of these heterodimers with detergent. These results are consistent with the evidence that maximal toxicity in mosquito larvae is achieved when the two subunits, BinA and BinB, are in a 1:1 molar ratio, and directly link proteolytic activation to heterodimerization. Formation of a heterodimer must thus be necessary for subsequent steps, e.g., interaction with membranes, or with a suitable receptor in susceptible mosquito species. Lastly, despite existing similarities between BinB C-terminal domain with domains 3 and 4 of pore-forming aerolysin, no aerolysin-like SDS-resistant heptameric oligomers were observed when the activated Bin subunits were incubated in the presence of detergents or lipidic membranes.
    Matched MeSH terms: Bacterial Toxins/metabolism*; Bacterial Toxins/chemistry*
  5. Letchumanan V, Yin WF, Lee LH, Chan KG
    Front Microbiol, 2015;6:33.
    PMID: 25688239 DOI: 10.3389/fmicb.2015.00033
    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.
    Matched MeSH terms: Bacterial Toxins
  6. Juárez-Pérez V, Delécluse A
    J Invertebr Pathol, 2001 Jul;78(1):57-8.
    PMID: 11500095
    Matched MeSH terms: Bacterial Toxins/genetics; Bacterial Toxins/metabolism*
  7. Barloy F, Lecadet MM, Delécluse A
    Curr Microbiol, 1998 Apr;36(4):232-7.
    PMID: 9504991
    The presence of two cry-like genes first identified in Clostridium bifermentans subsp. malaysia CH18 was investigated in Clostridium species including 12 subspecies of Clostridium bifermentans, 13 strains of other members of Clostridia genus, and 13 different subspecies of Bacillus thuringiensis. Oligonucleotides designed to amplify the two toxin genes, cmb71 and cmb72, were used. We found that these genes are present in 80% of the Clostridium bifermentans strains tested and in 8% of the other Clostridium and Bacillus thuringiensis strains.
    Matched MeSH terms: Bacterial Toxins/genetics*
  8. Barloy F, Lecadet MM, Delécluse A
    Gene, 1998 May 12;211(2):293-9.
    PMID: 9602158
    Three new open reading frames were found downstream from cbm71, a toxin gene from Clostridium bifermentans malaysia (Cbm) strain CH18. The first one (91bp downstream) called cbm72, is 1857bp long and encodes a 71727-Da protein (Cbm72) with a sequence similar to that of Bacillus thuringiensis delta-endotoxins. This protein shows no significant toxicity to mosquito larvae. The two others, cbm17.1 (462bp) and cbm17.2 (459bp), are copies of the same gene encoding Cbm P18 and P16 polypeptides and located 426bp and 1022bp downstream from cbm72, respectively. They encode 17189-Da and 17451-Da proteins with sequences 44.6% similar to that of Aspergillus fumigatus hemolysin; however, they were not hemolytic in the conditions tested.
    Matched MeSH terms: Bacterial Toxins/genetics*; Bacterial Toxins/metabolism
  9. El-Sadawy HA, Ramadan MY, Abdel Megeed KN, Ali HH, El Sattar SA, Elakabawy LM
    Trop Biomed, 2020 Jun 01;37(2):288-302.
    PMID: 33612799
    The sand fly Phlebotomus papatasi is an important disease-bearing vector. Five entomopathogenic nematodes (EPNs) - Steinernema carpocapsae DD136, Steinernema sp. (SII), S. carpocapsae all, S. abbasi, and Heterorhabditis bacteriophora HP88 - were applied as biocontrol agents against the late third instar larvae of P. papatasi. In addition, the effect of toxin complexes (TCs) of Xenorhabdus nematophila and Photorhabdus luminescens laumondii bacteria was evaluated. Results revealed that S. carpocapsae DD136 was the most virulent species followed by Steinernema sp. (SII) and S. carpocapsae all where LC50 were 472, 565, 962 IJs/ml, respectively. Also, the crude TCs were slightly more active and toxic than their fractionated protein. Histopathological examination of infected larvae with H. bacteriophora HP88 showed negative effect on their midgut cells. In conclusion, EPNs with their symbiotic bacteria are more effective as biocontrol agents than the crude or fractionated TCs against sand fly larvae.
    Matched MeSH terms: Bacterial Toxins*
  10. Chan WT, Yeo CC, Sadowy E, Espinosa M
    Front Microbiol, 2014;5:677.
    PMID: 25538695 DOI: 10.3389/fmicb.2014.00677
    Bacterial toxin-antitoxin (TAs) loci usually consist of two genes organized as an operon, where their products are bound together and inert under normal conditions. However, under stressful circumstances the antitoxin, which is more labile, will be degraded more rapidly, thereby unleashing its cognate toxin to act on the cell. This, in turn, causes cell stasis or cell death, depending on the type of TAs and/or time of toxin exposure. Previously based on in silico analyses, we proposed that Streptococcus pneumoniae, a pathogenic Gram-positive bacterium, may harbor between 4 and 10 putative TA loci depending on the strains. Here we have chosen the pneumococcal strain Hungary(19A)-6 which contains all possible 10 TA loci. In addition to the three well-characterized operons, namely relBE2, yefM-yoeB, and pezAT, we show here the functionality of a fourth operon that encodes the pneumococcal equivalent of the phd-doc TA. Transcriptional fusions with gene encoding Green Fluorescent Protein showed that the promoter was slightly repressed by the Phd antitoxin, and exhibited almost background values when both Phd-Doc were expressed together. These findings demonstrate that phd-doc shows the negative self-regulatory features typical for an authentic TA. Further, we also show that the previously proposed TAs XreA-Ant and Bro-XreB, although they exhibit a genetic organization resembling those of typical TAs, did not appear to confer a functional behavior corresponding to bona fide TAs. In addition, we have also discovered new interesting bioinformatics results for the known pneumococcal TAs RelBE2 and PezAT. A global analysis of the four identified toxins-antitoxins in the pneumococcal genomes (PezAT, RelBE2, YefM-YoeB, and Phd-Doc) showed that RelBE2 and Phd-Doc are the most conserved ones. Further, there was good correlation among TA types, clonal complexes and sequence types in the 48 pneumococcal strains analyzed.
    Matched MeSH terms: Bacterial Toxins
  11. Chan WT, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C, Moscoso M, et al.
    Toxins (Basel), 2018 09 18;10(9).
    PMID: 30231554 DOI: 10.3390/toxins10090378
    Type II (proteic) toxin-antitoxin systems (TAs) are widely distributed among bacteria and archaea. They are generally organized as operons integrated by two genes, the first encoding the antitoxin that binds to its cognate toxin to generate a harmless protein⁻protein complex. Under stress conditions, the unstable antitoxin is degraded by host proteases, releasing the toxin to achieve its toxic effect. In the Gram-positive pathogen Streptococcus pneumoniae we have characterized four TAs: pezAT, relBE, yefM-yoeB, and phD-doc, although the latter is missing in strain R6. We have assessed the role of the two yefM-yoeB and relBE systems encoded by S. pneumoniae R6 by construction of isogenic strains lacking one or two of the operons, and by complementation assays. We have analyzed the phenotypes of the wild type and mutants in terms of cell growth, response to environmental stress, and ability to generate biofilms. Compared to the wild-type, the mutants exhibited lower resistance to oxidative stress. Further, strains deleted in yefM-yoeB and the double mutant lacking yefM-yoeB and relBE exhibited a significant reduction in their ability for biofilm formation. Complementation assays showed that defective phenotypes were restored to wild type levels. We conclude that these two loci may play a relevant role in these aspects of the S. pneumoniae lifestyle and contribute to the bacterial colonization of new niches.
    Matched MeSH terms: Bacterial Toxins/genetics*
  12. Lia Natasha Amit, John DV, Fong SM
    Staphylococcus aureus aregram positive cocci which colonizethe skin and mucous membranes particularly the anterior nares. Prevalence of nosocomial infections associated with methicillin resistant S. aureus have been reported in hospitals (HA-MRSA) for over five decades. Recently,community-acquired MRSA (CA-MRSA) has emerged as a cause of skin and soft tissue infections in healthy individuals. These strains are sensitive to antimicrobials, carry genes for Panton-Valentine leukocidin (PVL) toxin and belong to the staphylococcal cassette chromosome (SCC) mec type IV or V. The suspected mode of transmission involves close contact with carriers leading to skin or nasal colonization that resultin subsequent active infection. Molecular typing is used to determine the mode of transmission of CA-MRSA in the community.General typing methods such as pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) and specific methods for Staphylococci such as SCCmec typing and spa typing have the capability to characterize bacterial chromosomes and mobile genetic elements. Combination of these molecular typing methods is necessary as each method has its own advantages with respect to discriminatory power, rapidity, cost effectiveness, reproducibility, and ease of performance.
    Matched MeSH terms: Bacterial Toxins
  13. Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, et al.
    Nat Commun, 2019 06 28;10(1):2869.
    PMID: 31253776 DOI: 10.1038/s41467-019-10732-w
    Clostridial neurotoxins, including tetanus and botulinum neurotoxins, generally target vertebrates. We show here that this family of toxins has a much broader host spectrum, by identifying PMP1, a clostridial-like neurotoxin that selectively targets anopheline mosquitoes. Isolation of PMP1 from Paraclostridium bifermentans strains collected in anopheline endemic areas on two continents indicates it is widely distributed. The toxin likely evolved from an ancestral form that targets the nervous system of similar organisms, using a common mechanism that disrupts SNARE-mediated exocytosis. It cleaves the mosquito syntaxin and employs a unique receptor recognition strategy. Our research has an important impact on the study of the evolution of clostridial neurotoxins and provides the basis for the use of P. bifermentans strains and PMP1 as innovative, environmentally friendly approaches to reduce malaria through anopheline control.
    Matched MeSH terms: Bacterial Toxins/pharmacology*
  14. Kawalek MD, Benjamin S, Lee HL, Gill SS
    Appl Environ Microbiol, 1995 Aug;61(8):2965-9.
    PMID: 7487029
    A new mosquitocidal Bacillus thuringiensis subsp., jegathesan, has recently been isolated from Malaysia. Parasporal crystal inclusions were purified from this strain and bioassayed against fourth-instar larvae of Culex quinquefasciatus, Aedes aegypti, Aedes togoi, Aedes albopictus, Anopheles maculatus, and Mansonia uniformis. The 50% lethal concentration of crystal inclusions for each species was 0.34, 8.08, 0.34, 17.59, 3.91, and 120 ng/ml, respectively. These values show that parasporal inclusions from this new subspecies have mosquitocidal toxicity comparable to that of inclusions isolated from B. thuringiensis subsp. israelensis. Solubilized and chymotrypsin-activated parasporal inclusions possessed low-level hemolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the crystals were composed of polypeptides of 77, 74, 72, 68, 55, 38, 35, 27, and 23 kDa. Analysis by Western blotting (immunoblotting) with polyclonal antisera raised against toxins purified from B. thuringiensis subsp. israelensis reveals that proteins in parasporal inclusions of subsp. jegathesan are distinct, because little cross-reactivity was shown. Analysis of the plasmid content of B. thuringiensis subsp. jegathesan indicates that the genes for toxin production may be located on 105- to 120-kb plasmids. Cry- clones that have been cured of these plasmids are nontoxic. Southern blot analysis of plasmid and chromosomal DNA from subsp. jegathesan showed little or low homology to the genes coding for CryIVA, CryIVB, and CryIVD from B. thuringiensis subsp. israelensis.
    Matched MeSH terms: Bacterial Toxins/isolation & purification
  15. Qureshi N, Chawla S, Likitvivatanavong S, Lee HL, Gill SS
    Appl Environ Microbiol, 2014 Sep;80(18):5689-97.
    PMID: 25002432 DOI: 10.1128/AEM.01139-14
    The management and control of mosquito vectors of human disease currently rely primarily on chemical insecticides. However, larvicidal treatments can be effective, and if based on biological insecticides, they can also ameliorate the risk posed to human health by chemical insecticides. The aerobic bacteria Bacillus thuringiensis and Lysinibacillus sphaericus have been used for vector control for a number of decades. But a more cost-effective use would be an anaerobic bacterium because of the ease with which these can be cultured. More recently, the anaerobic bacterium Clostridium bifermentans subsp. malaysia has been reported to have high mosquitocidal activity, and a number of proteins were identified as potentially mosquitocidal. However, the cloned proteins showed no mosquitocidal activity. We show here that four toxins encoded by the Cry operon, Cry16A, Cry17A, Cbm17.1, and Cbm17.2, are all required for toxicity, and these toxins collectively show remarkable selectivity for Aedes rather than Anopheles mosquitoes, even though C. bifermentans subsp. malaysia is more toxic to Anopheles. Hence, toxins that target Anopheles are different from those expressed by the Cry operon.
    Matched MeSH terms: Bacterial Toxins/genetics*; Bacterial Toxins/toxicity*
  16. Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, et al.
    Drug Des Devel Ther, 2015;9:2553-61.
    PMID: 26005332 DOI: 10.2147/DDDT.S77263
    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
    Matched MeSH terms: Bacterial Toxins/genetics*
  17. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
    Matched MeSH terms: Bacterial Toxins/genetics*; Bacterial Toxins/metabolism
  18. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
    Matched MeSH terms: Bacterial Toxins/genetics*
  19. Bakar FA, Yeo CC, Harikrishna JA
    BMC Biotechnol, 2015;15:26.
    PMID: 25887501 DOI: 10.1186/s12896-015-0138-8
    Bacterial toxin-antitoxin systems usually comprise of a pair of genes encoding a stable toxin and its cognate labile antitoxin and are located in the chromosome or in plasmids of several bacterial species. Chromosomally-encoded toxin-antitoxin systems are involved in bacterial stress responses and activation of the toxins usually leads to cell death or dormancy. Overexpression of the chromosomally-encoded YoeB toxin from the yefM-yoeB toxin-antitoxin locus of the Gram-positive bacterium Streptococcus pneumoniae has been shown to cause cell death in S. pneumoniae as well as E. coli.
    Matched MeSH terms: Bacterial Toxins/genetics; Bacterial Toxins/metabolism*; Bacterial Toxins/pharmacology; Bacterial Toxins/chemistry
  20. Riley TV, Collins DA, Karunakaran R, Kahar MA, Adnan A, Hassan SA, et al.
    J Clin Microbiol, 2018 Jun;56(6).
    PMID: 29563206 DOI: 10.1128/JCM.00170-18
    Accumulating evidence shows a high prevalence of Clostridium difficile in Southeast Asia associated with a range of clinical presentations. However, severe infections are rarely reported. We investigated C. difficile infection (CDI) across four hospitals in Kuala Lumpur and Kota Bharu, Malaysia. Enzyme immunoassays for glutamate dehydrogenase (GDH) and toxin A or B were performed on diarrheal stool specimens collected from patients in 2015 and 2016. Specimens were also cultured and isolates of C. difficile characterized by PCR ribotyping and detection of toxin genes. In total, 437 specimens were collected and fecal toxin was detected in 3.0%. A further 16.2% of specimens were GDH positive and toxin negative. After culture, toxigenic strains were isolated from 10.3% and nontoxigenic strains from 12.4% of specimens. The most prevalent PCR ribotypes (RTs) were RT 017 (20.0%) and RT 043 (10.0%). The high prevalence of RT 017 and nontoxigenic strains in Malaysia and in neighboring Thailand and Indonesia suggests that they localize to the region of Southeast Asia, with an implication that they may mediate the burden of CDI in the region.
    Matched MeSH terms: Bacterial Toxins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links