Displaying publications 1 - 20 of 250 in total

Abstract:
Sort:
  1. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Biol Eng Comput, 2011 Dec;49(12):1393-403.
    PMID: 21947767 DOI: 10.1007/s11517-011-0833-0
    The relationship between microarchitecture to the failure mechanism and mechanical properties can be assessed through experimental and computational methods. In this study, both methods were utilised using bovine cadavers. Twenty four samples of cancellous bone were extracted from fresh bovine and the samples were cleaned from excessive marrow. Uniaxial compression testing was performed with displacement control. After mechanical testing, each specimen was ashed in a furnace. Four of the samples were exemplarily scanned using micro-computed tomography (μCT) and three dimensional models of the cancellous bones were reconstructed for finite element simulation. The mechanical properties and the failure modes obtained from numerical simulations were then compared to the experiments. Correlations between microarchitectural parameters to the mechanical properties and failure modes were then made. The Young's modulus correlates well with the bone volume fraction with R² = 0.615 and P value 0.013. Three different types of failure modes of cancellous bone were observed: oblique fracture (21.7%), perpendicular global fracture (47.8%), and scattered localised fracture (30.4%). However, no correlations were found between the failure modes to the morphological parameters. The percentage of error between computer predictions and the actual experimental test was from 6 to 12%. These mechanical properties and information on failure modes can be used for the development of synthetic cancellous bone.
    Matched MeSH terms: Bone and Bones/physiopathology*
  2. Matsumura H, Zuraina M
    Am. J. Phys. Anthropol., 1999 Jul;109(3):327-40.
    PMID: 10407463
    A nearly complete human skeleton dating to the Early Holocene (epi-Paleolithic culture) excavated from Gua Gunung Runtuh, Malaysia, is described. Cranial, dental, and limb bone measurements are recorded on the skeleton, and compared with early and modern skeletal samples from Southeast Asia and Australia. The comparisons demonstrate that the Gua Gunung specimen is most similar to Australian Aborigines in dental and limb measurements, while the cranial measurements indicate a close affinity to Mesolithic samples from Malaysia and Flores. These findings further suggest that the Gua Gunung skeleton, as well as other fossils from Tabon and Niah, are representative of an early group of people who occupied Sundaland during the late Pleistocene, and may be the ancestors of Australian Aborigines. Some of the dental and limb bone measurements exhibited by the ancestors persist in Southeast Asian populations until the early Holocene. Differences in cranial traits have, however, accumulated since the late Pleistocene in Australian Aborigines and early Southeast Asian peoples.
    Matched MeSH terms: Bone and Bones/anatomy & histology*
  3. Che Nor Zarida Che Seman, Zamzuri Zakaria
    MyJurnal
    Critical size defects (CSD) in the long bones of New Zealand White rabbits (Oryctolagus cuniculus) have been used for years as an experimental model for investigation of the effectiveness of a new bone substitute material. There are varieties of protocols available in the literature. This technical note attempts to present an alternative surgical technique of a CSD in the New Zealand white rabbit tibia. Methods: Thirty-nine New Zealand White rabbits were used in this study. A CSD of approximately 4.5 mm (width) X 9.0 mm (length) was surgically drilled at the proximal tibial metaphysis, approximately 1 cm from the knee joint. The surrounding of soft tissue was repositioned and sutured layer by layer with bioabsorbable surgical suture. Two x-rays of anteroposterior and lateral were taken before assessed under computed tomography scan at 6, 12 and 24 weeks. Results: This alternative method created CSD with less bleeding from the muscle observed. No mortality or other surgical complications observed within 6 weeks, 12 weeks and 24 weeks following surgery. Conclusion: A simple and safe method for performing CSD was demonstrated and recommended as an alternative approach for surgery on New Zealand White rabbits.
    Matched MeSH terms: Bone and Bones
  4. Mahmood SK, Razak IA, Ghaji MS, Yusof LM, Mahmood ZK, Rameli MABP, et al.
    Int J Nanomedicine, 2017;12:8587-8598.
    PMID: 29238193 DOI: 10.2147/IJN.S145663
    The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit's radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material.
    Matched MeSH terms: Bone and Bones/physiology; Bone and Bones/surgery
  5. Shafiu Kamba A, Zakaria ZA
    Biomed Res Int, 2014;2014:215097.
    PMID: 24734228 DOI: 10.1155/2014/215097
    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process.
    Matched MeSH terms: Bone and Bones/chemistry
  6. Chahal S, Chalal S, Fathima SJ, Yusoff MB
    Biomed Mater Eng, 2014;24(1):799-806.
    PMID: 24211966 DOI: 10.3233/BME-130871
    In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
    Matched MeSH terms: Bone and Bones
  7. Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F
    Molecules, 2020 Jul 08;25(14).
    PMID: 32650572 DOI: 10.3390/molecules25143129
    A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
    Matched MeSH terms: Bone and Bones/cytology; Bone and Bones/metabolism*
  8. An X, Chong PL, Zohourkari I, Roy S, Merdji A, Linda Gnanasagaran C, et al.
    Proc Inst Mech Eng H, 2023 Aug;237(8):1008-1016.
    PMID: 37477395 DOI: 10.1177/09544119231187685
    The mechanical properties of tissue scaffolds are essential in providing stability for tissue repair and growth. Thus, the ability of scaffolds to withstand specific loads is crucial for scaffold design. Most research on scaffold pores focuses on grids with pore size and gradient structure, and many research models are based on scaffolding with vertically arranged holes. However, little attention is paid to the influence of the distribution of holes on the mechanical properties of the scaffold. To address this gap, this research investigates the effect of pore distribution on the mechanical properties of tissue scaffolds. The study involves four types of scaffold designs with regular and staggered pore arrangements and porosity ranging from 30% to 80%. Finite element analysis (FEA) was used to compare the mechanical properties of different scaffold designs, with von-Mises stress distribution maps generated for each scaffold. The results show that scaffolds with regular vertical holes exhibit a more uniform stress distribution and better mechanical performance than those with irregular holes. In contrast, the scaffold with a staggered arrangement of holes had a higher probability of stress concentration. The study emphasized the importance of balancing porosity and strength in scaffold design.
    Matched MeSH terms: Bone and Bones
  9. Al-Abdullah KI, Lim CP, Najdovski Z, Yassin W
    Int J Med Robot, 2019 Jun;15(3):e1989.
    PMID: 30721570 DOI: 10.1002/rcs.1989
    BACKGROUND: This paper presents a model-based bone milling state identification method that provides intraoperative bone quality information during robotic bone milling. The method helps surgeons identify bone layer transitions during bone milling.

    METHODS: On the basis of a series of bone milling experiments with commercial artificial bones, an artificial neural network force model is developed to estimate the milling force of different bone densities as a function of the milling feed rate and spindle speed. The model estimations are used to identify the bone density at the cutting zone by comparing the actual milling force with the estimated one.

    RESULTS: The verification experiments indicate the ability of the proposed method to distinguish between one cortical and two cancellous bone densities.

    CONCLUSIONS: The significance of the proposed method is that it can be used to discriminate a set of different bone density layers for a range of the milling feed rate and spindle speed.

    Matched MeSH terms: Bone and Bones
  10. Kamalaldin N', Jaafar M, Zubairi SI, Yahaya BH
    Adv Exp Med Biol, 2019;1084:1-15.
    PMID: 29299875 DOI: 10.1007/5584_2017_130
    The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.
    Matched MeSH terms: Bone and Bones
  11. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Bone and Bones/drug effects; Bone and Bones/pathology*
  12. Yee MMF, Chin KY, Ima-Nirwana S, Wong SK
    Molecules, 2021 Mar 21;26(6).
    PMID: 33801011 DOI: 10.3390/molecules26061757
    Vitamin A is a fat-soluble micronutrient essential for growth, immunity, and good vision. The preformed retinol is commonly found in food of animal origin whereas provitamin A is derived from food of plant origin. This review summarises the current evidence from animal, human and cell-culture studies on the effects of vitamin A towards bone health. Animal studies showed that the negative effects of retinol on the skeleton were observed at higher concentrations, especially on the cortical bone. In humans, the direct relationship between vitamin A and poor bone health was more pronounced in individuals with obesity or vitamin D deficiency. Mechanistically, vitamin A differentially influenced the stages of osteogenesis by enhancing early osteoblastic differentiation and inhibiting bone mineralisation via retinoic acid receptor (RAR) signalling and modulation of osteocyte/osteoblast-related bone peptides. However, adequate vitamin A intake through food or supplements was shown to maintain healthy bones. Meanwhile, provitamin A (carotene and β-cryptoxanthin) may also protect bone. In vitro evidence showed that carotene and β-cryptoxanthin may serve as precursors for retinoids, specifically all-trans-retinoic acid, which serve as ligand for RARs to promote osteogenesis and suppressed nuclear factor-kappa B activation to inhibit the differentiation and maturation of osteoclasts. In conclusion, we suggest that both vitamin A and provitamin A may be potential bone-protecting agents, and more studies are warranted to support this hypothesis.
    Matched MeSH terms: Bone and Bones/metabolism*
  13. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS
    Malays Orthop J, 2018 Nov;12(3):6-13.
    PMID: 30555640 DOI: 10.5704/MOJ.1811.002
    Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals' vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body's compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material's compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
    Matched MeSH terms: Bone and Bones
  14. Chai HY, Swee TT, Seng GH, Wee LK
    Biomed Eng Online, 2013;12:27.
    PMID: 23565999 DOI: 10.1186/1475-925X-12-27
    The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task.
    Matched MeSH terms: Bone and Bones/physiology*
  15. Irfan M, Ahmad Helmy AK, Wan Shah Jihan WD
    Med J Malaysia, 2012 Oct;67(5):491-3.
    PMID: 23770865
    Fish is one of the major sources of protein among Malaysians. This has made incidents of fish bones lodged in the throat fairly common clinical problems. Plain radiograph, which is the first line of imaging in such cases, has been reported to have low sensitivity. Besides the location, the degree of radio-opacity of the bone is another important factor and is species dependent. This study was undertaken to determine the radio-opacity of bones from commonly consumed fish in Malaysia. A total of 15 types of fish were identified, six of them were opaque even when embedded and three were visualized in the simulated airway. In terms of radio-opacity, the commonly consumed fish in Malaysia possessed opaque bones and this fact can help doctors identify the location of the foreign body in the throat.
    Matched MeSH terms: Bone and Bones
  16. Vitus V, Ibrahim F, Wan Kamarul Zaman WS
    Tissue Eng Part C Methods, 2022 10;28(10):529-544.
    PMID: 35350873 DOI: 10.1089/ten.TEC.2021.022333
    Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.
    Matched MeSH terms: Bone and Bones
  17. Lai P, Nagammai T, Vethakkan S
    Malays Fam Physician, 2013;8(2):47-52.
    PMID: 25606283 MyJurnal
    Bisphosphonates are pyrophosphate analogues, with a strong affinity for bones. They inhibit bone resorption and are currently the first choice of treatment for osteoporosis. Bisphosphonates should be taken in a specific manner and for at least one year to be effective in the maintenance and improvement of bone mineral density (BMD), as well as for protection against fractures. We report a case of a postmenospausal osteoporotic woman who lost BMD despite being on bisphosphonate therapy for eight years, highlighting issues that a primary care doctor needs to address before deciding on the next best option.
    Matched MeSH terms: Bone and Bones
  18. Loganathan K, Chacko JP, Saravanan BS, Vaithilingam B
    J Oral Biol Craniofac Res, 2012 Sep-Dec;2(3):210-2.
    PMID: 25737868 DOI: 10.1016/j.jobcr.2012.10.011
    Even though variety of foreign bodies has been reported in a various locations in the craniofacial region, wooden foreign bodies are uncommon. Appropriate management of wooden foreign bodies is considered essential because of their infectious complications and difficulty in radiographic localization. Even though literature is replete with articles on management of foreign bodies in the craniofacial region, specific management of wooden foreign bodies are rarely reported. The purpose of this article is to report two cases of deeply placed wooden foreign body and a protocol for managing them in the maxillofacial region.
    Matched MeSH terms: Bone and Bones
  19. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Wren AW, et al.
    J Mater Sci Mater Med, 2016 Jan;27(1):18.
    PMID: 26676864 DOI: 10.1007/s10856-015-5620-2
    Bioactive glasses may function as antimicrobial delivery systems through the incorporation and subsequent release of therapeutic ions. The aim of this study was to evaluate the antimicrobial properties of a series of composite scaffolds composed of poly(octanediol citrate) with increased loads of a bioactive glass that releases zinc (Zn(2+)) and gallium (Ga(3+)) ions in a controlled manner. The antibacterial activity of these scaffolds was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The ability of the scaffolds to release ions and the subsequent ingress of these ions into hard tissue was evaluated using a bovine bone model. Scaffolds containing bioactive glass exhibited antibacterial activity and this increased in vitro with higher bioactive glass loads; viable cells decreased to about 20 % for the composite scaffold containing 30 % bioactive glass. The Ga(3+) release rate increased as a function of time and Zn(2+) was shown to incorporate into the surrounding bone.
    Matched MeSH terms: Bone and Bones
  20. Tong M
    Pediatr Dermatol, 1995 Jun;12(2):134-7.
    PMID: 7659639
    Fraternal twins of Malay descent had the Rothmund-Thomson syndrome. This is a rare, autosomal recessive disorder characterized by photosensitivity, poikiloderma, short stature, skeletal defects, and juvenile cataracts. This is the first case report of the syndrome from southeast Asia.
    Matched MeSH terms: Bone and Bones/abnormalities
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links