Displaying publications 1 - 20 of 119 in total

Abstract:
Sort:
  1. Zheng Y, Fu J, Li S
    Mol Phylogenet Evol, 2009 Jul;52(1):70-83.
    PMID: 19348953 DOI: 10.1016/j.ympev.2009.03.026
    Several anuran groups of Laurasian origin are each co-distributed in four isolated regions of the Northern Hemisphere: central/southern Europe and adjacent areas, Korean Peninsula and adjacent areas, Indo-Malaya, and southern North America. Similar distribution patterns have been observed in diverse animal and plant groups. Savage [Savage, J.M., 1973. The geographic distribution of frogs: patterns and predictions. In: Vial, J.L. (Ed.), Evolutionary Biology of the Anurans. University of Missouri Press, Columbia, pp. 351-445] hypothesized that the Miocene global cooling and increasing aridities in interiors of Eurasia and North America caused a southward displacement and range contraction of Laurasian frogs (and other groups). We use the frog genus Bombina to test Savage's biogeographical hypothesis. A phylogeny of Bombina is reconstructed based on three mitochondrial and two nuclear gene fragments. The genus is divided into three major clades: an Indo-Malaya clade includes B. fortinuptialis, B. lichuanensis, B. maxima, and B. microdeladigitora; a European clade includes B. bombina, B. pachypus, and B. variegata; and a Korean clade contains B. orientalis. The European and Korean clades form sister-group relationship. Molecular dating of the phylogenetic tree using the penalized likelihood and Bayesian analyses suggests that the divergence between the Indo-Malaya clade and other Bombina species occurred 5.9-28.6 million years ago. The split time between the European clade and the Korean clade is estimated at 5.1-20.9 million years ago. The divergence times of these clades are not significantly later than the timing of Miocene cooling and drying, and therefore can not reject Savage's hypothesis. Some other aspects of biogeography of Bombina also are discussed. The Korean Peninsula and the Shandong Peninsula might have supplied distinct southern refugia for B. orientalis during the Pleistocene glacial maxima. In the Indo-Malaya clade, the uplift of the Tibetan Plateau might have promoted the split between B. maxima and the other species.
    Matched MeSH terms: Cell Nucleus/genetics
  2. Zainal N, Chang CP, Cheng YL, Wu YW, Anderson R, Wan SW, et al.
    Sci Rep, 2017 02 20;7:42998.
    PMID: 28216632 DOI: 10.1038/srep42998
    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.
    Matched MeSH terms: Cell Nucleus/metabolism
  3. Yusoff AAM, Abdullah WSW, Khair SZNM, Radzak SMA
    Oncol Rev, 2019 Jan 14;13(1):409.
    PMID: 31044027 DOI: 10.4081/oncol.2019.409
    Mitochondria are cellular machines essential for energy production. The biogenesis of mitochondria is a highly complex and it depends on the coordination of the nuclear and mitochondrial genome. Mitochondrial DNA (mtDNA) mutations and deletions are suspected to be associated with carcinogenesis. The most described mtDNA deletion in various human cancers is called the 4977-bp common deletion (mDNA4977) and it has been explored since two decades. In spite of that, its implication in carcinogenesis still unknown and its predictive and prognostic impact remains controversial. This review article provides an overview of some of the cellular and molecular mechanisms underlying mDNA4977 formation and a detailed summary about mDNA4977 reported in various types of cancers. The current knowledges of mDNA4977 as a prognostic and predictive marker are also discussed.
    Matched MeSH terms: Cell Nucleus
  4. Yeo EH, Goh WL, Chow SC
    Toxicol. Mech. Methods, 2018 Mar;28(3):157-166.
    PMID: 28849708 DOI: 10.1080/15376516.2017.1373882
    The leucine aminopeptidase inhibitor, benzyloxycarbonyl-leucine-chloromethylketone (z-L-CMK), was found to be toxic and readily induce cell death in Jurkat T cells. Dose-response studies show that lower concentration of z-L-CMK induced apoptosis in Jurkat T cells whereas higher concentration causes necrosis. In z-L-CMK-induced apoptosis, both the initiator caspases (-8 and -9) and effector caspases (-3 and -6) were processed to their respective subunits. However, the caspases remained intact in z-L-CMK-induced necrosis. The caspase inhibitor, z-VAD-FMK inhibited z-L-CMK-mediated apoptosis and caspase processing but has no effect on z-L-CMK-induced necrosis in Jurkat T cells. The high mobility group protein B1 (HMGB1) protein was found to be released into the culture medium by the necrotic cells and not the apoptotic cells. These results indicate that the necrotic cell death mediated by z-L-CMK at high concentrations is via classical necrosis rather than secondary necrosis. We also demonstrated that cell death mediated by z-L-CMK was associated with oxidative stress via the depletion of intracellular glutathione (GSH) and increase in reactive oxygen species (ROS), which was blocked by N-acetyl cysteine. Taken together, the results demonstrated that z-L-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. The toxic side effects in Jurkat T cells mediated by z-L-CMK are associated with oxidative stress via the depletion of GSH and accumulation of ROS.
    Matched MeSH terms: Cell Nucleus Shape/drug effects
  5. Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL
    Plant Cell Environ, 2019 05;42(5):1657-1673.
    PMID: 30549047 DOI: 10.1111/pce.13503
    Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
    Matched MeSH terms: Active Transport, Cell Nucleus/drug effects*
  6. Yadav M, Nambiar S, Khoo SP, Yaacob HB
    Arch Oral Biol, 1997 Aug;42(8):559-67.
    PMID: 9347118
    The prevalence and cellular distribution of human herpesvirus 7 (HHV-7) in archival labial salivary glands was analysed for virus-specific DNA sequences by polymerase chain reaction (PCR) and in situ hybridization signals. In addition, the cellular expression of HHV-7-encoded protein was detected by immunohistochemical staining with a virus-specific monoclonal antibody. Eleven of 20 samples were positive for the HHV-7 DNA sequence by PCR. Eighteen of 20 tissues analysed by in situ hybridization showed signals in ductal, serous and mucous cells. Some nuclei of these cells and also the myoepithelial population were positive. In immunolocalization studies, all 20 salivary glands consistently showed HHV-7-expressed protein in the cytoplasm of ductal cuboidal and columnar cells. The protein was also found in the cytoplasm of mucous and serous acinar cells that were immunopositive for HHV-7. The observations are consistent with the suggestion that the labial salivary gland is a site for virus replication, potential persistence and a source of infective HHV-7 in saliva.
    Matched MeSH terms: Cell Nucleus/ultrastructure; Cell Nucleus/virology
  7. Wong RS, Radhakrishnan AK, Ibrahim TA, Cheong SK
    Microsc Microanal, 2012 Jun;18(3):462-9.
    PMID: 22640960 DOI: 10.1017/S1431927612000177
    Tocotrienols are isomers of the vitamin E family, which have been reported to exert cytotoxic effects in various cancer cells. Although there have been some reports on the effects of tocotrienols in leukemic cells, ultrastructural evidence of tocotrienol-induced apoptotic cell death in leukemic cells is lacking. The present study investigated the effects of three isomers of tocotrienols (alpha, delta, and gamma) on a human T lymphoblastic leukemic cell line (CEM-SS). Cell viability assays showed that all three isomers had cytotoxic effects (p < 0.05) on CEM-SS cells with delta-tocotrienol being the most potent. Transmission electron microscopy showed that the cytotoxic effects by delta- and gamma-tocotrienols were through the induction of an apoptotic pathway as demonstrated by the classical ultrastructural apoptotic changes characterized by peripheral nuclear chromatin condensation and nuclear fragmentation. These findings were confirmed biochemically by the demonstration of phosphatidylserine externalization via flow cytometry analysis. This is the first study showing classical ultrastructural apoptotic changes induced by delta- and gamma-tocotrienols in human T lymphoblastic leukemic cells.
    Matched MeSH terms: Cell Nucleus/ultrastructure
  8. Vijayarathna S, Oon CE, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Curr Gene Ther, 2014;14(2):112-20.
    PMID: 24588707
    For years researchers have exerted every effort to improve the influential roles of microRNA (miRNA) in regulating genes that direct mammalian cell development and function. In spite of numerous advancements, many facets of miRNA generation remain unresolved due to the perplexing regulatory networks. The biogenesis of miRNA, eminently endures as a mystery as no universal pathway defines or explicates the variegation in the rise of miRNAs. Early evidence in biogenesis ignited specific steps of being omitted or replaced that eventuate in the individual miRNAs of different mechanisms. Understanding the basic foundation concerning how miRNAs are generated and function will help with diagnostic tools and therapeutic strategies. This review encompasses the canonical and the non-canonical pathways involved in miRNA biogenesis, while elucidating how miRNAs regulate genes at the nuclear level and also the mechanism that lies behind circulating miRNAs.
    Matched MeSH terms: Cell Nucleus/genetics
  9. Vahtera V, Edgecombe GD
    PLoS One, 2014;9(11):e112461.
    PMID: 25389773 DOI: 10.1371/journal.pone.0112461
    Edentistoma octosulcatum Tömösváry, 1882, is a rare, superficially millipede-like centipede known only from Borneo and the Philippines. It is unique within the order Scolopendromorpha for its slow gait, robust tergites, and highly modified gizzard and mandible morphology. Not much is known about the biology of the species but it has been speculated to be arboreal with a possibly vegetarian diet. Until now its phylogenetic position within the subfamily Otostigminae has been based only on morphological characters, being variably ranked as a monotypic tribe (Arrhabdotini) or classified with the Southeast Asian genus Sterropristes Attems, 1934. The first molecular data for E. octosulcatum sourced from a newly collected specimen from Sarawak were analysed with and without morphology. Parsimony analysis of 122 morphological characters together with two nuclear and two mitochondrial loci resolves Edentistoma as sister group to three Indo-Australian species of Rhysida, this clade in turn grouping with Ethmostigmus, whereas maximum likelihood and parsimony analyses of the molecular data on their own ally Edentistoma with species of Otostigmus. A position of Edentistoma within Otostigmini (rather than being its sister group as predicted by the Arrhabdotini hypothesis) is consistently retrieved under different analytical conditions, but support values within the subfamily remain low for most nodes. The species exhibits strong pushing behaviour, suggestive of burrowing habits. Evidence against a suggested vegetarian diet is provided by observation of E. octosulcatum feeding on millipedes in the genus Trachelomegalus.
    Matched MeSH terms: Cell Nucleus/genetics
  10. Vadivelu J, Vellasamy KM, Thimma J, Mariappan V, Kang WT, Choh LC, et al.
    PLoS Negl Trop Dis, 2017 01;11(1):e0005241.
    PMID: 28045926 DOI: 10.1371/journal.pntd.0005241
    BACKGROUND: During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure.

    METHODS: We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells.

    RESULTS: TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei.

    CONCLUSION: B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

    Matched MeSH terms: Cell Nucleus/microbiology*
  11. Ting YH, Lu TJ, Johnson AW, Shie JT, Chen BR, Kumar S S, et al.
    J Biol Chem, 2017 Jan 13;292(2):585-596.
    PMID: 27913624 DOI: 10.1074/jbc.M116.747634
    Eukaryotic ribosomes are composed of rRNAs and ribosomal proteins. Ribosomal proteins are translated in the cytoplasm and imported into the nucleus for assembly with the rRNAs. It has been shown that chaperones or karyopherins responsible for import can maintain the stability of ribosomal proteins by neutralizing unfavorable positive charges and thus facilitate their transports. Among 79 ribosomal proteins in yeast, only a few are identified with specific chaperones. Besides the classic role in maintaining protein stability, chaperones have additional roles in transport, chaperoning the assembly site, and dissociation of ribosomal proteins from karyopherins. Bcp1 has been shown to be necessary for the export of Mss4, a phosphatidylinositol 4-phosphate 5-kinase, and required for ribosome biogenesis. However, its specific function in ribosome biogenesis has not been described. Here, we show that Bcp1 dissociates Rpl23 from the karyopherins and associates with Rpl23 afterward. Loss of Bcp1 causes instability of Rpl23 and deficiency of 60S subunits. In summary, Bcp1 is a novel 60S biogenesis factor via chaperoning Rpl23 in the nucleus.
    Matched MeSH terms: Cell Nucleus/genetics; Cell Nucleus/metabolism*
  12. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: Cell Nucleus Shape/drug effects
  13. Teng L, Han W, Fan X, Zhang X, Xu D, Wang Y, et al.
    Plant Mol Biol, 2021 Apr;105(6):611-623.
    PMID: 33528753 DOI: 10.1007/s11103-020-01113-9
    We applied an integrative approach using multiple methods to verify cytosine methylation in the chloroplast DNA of the multicellular brown alga Saccharina japonica. Cytosine DNA methylation is a heritable process which plays important roles in regulating development throughout the life cycle of an organism. Although methylation of nuclear DNA has been studied extensively, little is known about the state and role of DNA methylation in chloroplast genomes, especially in marine algae. Here, we have applied an integrated approach encompassing whole-genome bisulfite sequencing, methylated DNA immunoprecipitation, gene co-expression networks and photophysiological analyses to provide evidence for the role of chloroplast DNA methylation in a marine alga, the multicellular brown alga Saccharina japonica. Although the overall methylation level was relatively low in the chloroplast genome of S. japonica, gametophytes exhibited higher methylation levels than sporophytes. Gene-specific bisulfite-cloning sequencing provided additional evidence for the methylation of key photosynthetic genes. Many of them were highly expressed in sporophytes whereas genes involved in transcription, translation and biosynthesis were strongly expressed in gametophytes. Nucleus-encoded photosynthesis genes were co-expressed with their chloroplast-encoded counterparts potentially contributing to the higher photosynthetic performance in sporophytes compared to gametophytes where these co-expression networks were less pronounced. A nucleus-encoded DNA methyltransferase of the DNMT2 family is assumed to be responsible for the methylation of the chloroplast genome because it is predicted to possess a plastid transit peptide.
    Matched MeSH terms: Cell Nucleus
  14. Tang JR, Mat Isa NA, Ch'ng ES
    PLoS One, 2015;10(11):e0142830.
    PMID: 26560331 DOI: 10.1371/journal.pone.0142830
    Despite the effectiveness of Pap-smear test in reducing the mortality rate due to cervical cancer, the criteria of the reporting standard of the Pap-smear test are mostly qualitative in nature. This study addresses the issue on how to define the criteria in a more quantitative and definite term. A negative Pap-smear test result, i.e. negative for intraepithelial lesion or malignancy (NILM), is qualitatively defined to have evenly distributed, finely granular chromatin in the nuclei of cervical squamous cells. To quantify this chromatin pattern, this study employed Fuzzy C-Means clustering as the segmentation technique, enabling different degrees of chromatin segmentation to be performed on sample images of non-neoplastic squamous cells. From the simulation results, a model representing the chromatin distribution of non-neoplastic cervical squamous cell is constructed with the following quantitative characteristics: at the best representative sensitivity level 4 based on statistical analysis and human experts' feedbacks, a nucleus of non-neoplastic squamous cell has an average of 67 chromatins with a total area of 10.827 μm2; the average distance between the nearest chromatin pair is 0.508 μm and the average eccentricity of the chromatin is 0.47.
    Matched MeSH terms: Cell Nucleus/metabolism
  15. Tan CW, Ng MH, Ohnmar H, Lokanathan Y, Nur-Hidayah H, Roohi SA, et al.
    Indian J Orthop, 2013 Nov;47(6):547-52.
    PMID: 24379458 DOI: 10.4103/0019-5413.121572
    BACKGROUND AND AIM: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect.

    MATERIALS AND METHODS: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study.

    RESULTS: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix.

    CONCLUSION: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model.

    Matched MeSH terms: Cell Nucleus
  16. Takaoka H, Srisuka W, Low VL, Saeung A
    J Med Entomol, 2018 05 04;55(3):561-568.
    PMID: 29361011 DOI: 10.1093/jme/tjx241
    Simulium (Simulium) phraense sp. nov. (Diptera: Simuliidae) is described from females, males, pupae, and larvae from Thailand. This new species is placed in the Simulium striatum species group and is most similar to Simulium (Simulium) nakhonense Takaoka & Suzuki (Diptera: Simuliidae) from Thailand among species of the same species group but is barely distinguished from the latter species by lacking annular ridges on the surface of the pupal gill filaments. The fast-evolving nuclear big zinc finger (BZF) gene has successfully differentiated this new species from its allies, S. (S.) nakhonense and Simulium (Simulium) chiangmaiense Takaoka & Suzuki (Diptera: Simuliidae) of the S. striatum species group. The BZF gene sequences show that this new species is more closely related to S. (S.) nakhonense than to S. (S.) chiangmaiense, further supporting its morphological classification.
    Matched MeSH terms: Cell Nucleus/genetics
  17. Sohail A, Khan A, Nisar H, Tabassum S, Zameer A
    Med Image Anal, 2021 08;72:102121.
    PMID: 34139665 DOI: 10.1016/j.media.2021.102121
    Mitotic nuclei estimation in breast tumour samples has a prognostic significance in analysing tumour aggressiveness and grading system. The automated assessment of mitotic nuclei is challenging because of their high similarity with non-mitotic nuclei and heteromorphic appearance. In this work, we have proposed a new Deep Convolutional Neural Network (CNN) based Heterogeneous Ensemble technique "DHE-Mit-Classifier" for analysis of mitotic nuclei in breast histopathology images. The proposed technique in the first step detects candidate mitotic patches from the histopathological biopsy regions, whereas, in the second step, these patches are classified into mitotic and non-mitotic nuclei using the proposed DHE-Mit-Classifier. For the development of a heterogeneous ensemble, five different deep CNNs are designed and used as base-classifiers. These deep CNNs have varying architectural designs to capture the structural, textural, and morphological properties of the mitotic nuclei. The developed base-classifiers exploit different ideas, including (i) region homogeneity and feature invariance, (ii) asymmetric split-transform-merge, (iii) dilated convolution based multi-scale transformation, (iv) spatial and channel attention, and (v) residual learning. Multi-layer-perceptron is used as a meta-classifier to develop a robust and accurate classifier for providing the final decision. The performance of the proposed ensemble "DHE-Mit-Classifier" is evaluated against state-of-the-art CNNs. The performance evaluation on the test set suggests the superiority of the proposed ensemble with an F-score (0.77), recall (0.71), precision (0.83), and area under the precision-recall curve (0.80). The good generalisation of the proposed ensemble with a considerably high F-score and precision suggests its potential use in the development of an assistance tool for pathologists.
    Matched MeSH terms: Cell Nucleus
  18. Sivakumar S
    Acta Cytol., 2007 Jul-Aug;51(4):583-5.
    PMID: 17718128 DOI: 10.1159/000325801
    BACKGROUND: Pilomatrixoma (pilomatrixoma, calcifying epithelioma of Malherbe) is a relatively uncommon, benign neoplasm arising from the skin adnexa. The tumor can cause diagnostic difficulty not only for the clinician but also for the cytologist.

    CASE: A 62-year-old woman presented with a right submandibular swelling of 4 months' duration. The clinical findings were highly suspicious for malignancy. A fine needle aspiration biopsy was performed. Three preliminary differential diagnoses were offered: mucoepidermoid carcinoma of the submandibular salivary gland, squamous cell carcinomatous deposit in a submandibular lymph node and calcifying odontogenic tumor. Computed tomography demonstrated no bony lesion. No primary site of squamous cell carcinoma could be identified. An excisional biopsy of the swelling was performed, and the histologic diagnosis of pilomatrixoma was made.

    CONCLUSION: The cytologic presentation of pilomatrixoma of the right submandibular region can masquerade as that of a malignant tumor, in this case mucoepidermoid carcinoma, squamous cell carcinoma or odontogenic tumor. This case delineates the cytomorphologic features of pilomatrixoma that may mimic carcinoma.
    Matched MeSH terms: Cell Nucleus/pathology
  19. Siti-Aishah MA, Noriah O, Malini MN, Zainul-Rashid MR, Das S
    Clin Ter, 2011;162(5):447-50.
    PMID: 22041803
    A 30-year-old, nulliparous woman presented with a history of subfertility. On examination she was found to have uterine fibroid of 28 weeks size of gravid uterus and subsequently laporatomy myomectomy was performed. Multilobulated masses, with diameters ranging from 22 mm to 160 mm were found. Cut sections of the lobulated masses showed whitish whorled cut surface. One of the multilobulated masses had a cystic cavity, measuring 60x50x35 mm(3). Light microscopic findings of the mass with the cystic cavity showed a well-circumscribed cellular tumour composed of cells exhibiting moderate nuclear atypia which were enlarged, nuclei with prominent chromatin clumping and were distributed in areas. Some tumour cells showed large nuclear pseudoinclusions, multinucleated or multilobated tumour giant cells, smudging and few enlarged nucleoli. Mitotic activity was 4 MFs per 10 HPFs. Occasional cells with intracytoplasmic inclusions resembling rhabdoid - like features were seen. There were no atypical mitoses or tumour necroses were noted. Diagnosis of atypical leiomyoma or symplastic leiomyoma was made. Atypical or symplastic leiomyomas are rare in the region of Malaysia and the present case discusses its incidence in younger age, its morphological features along with diagnosis and clinical outcome.
    Matched MeSH terms: Cell Nucleus/ultrastructure
  20. Siti Nur Lina Azman, Huzlinda Hussin, Salmiah Md Said, Zanariah Alias, Maizaton Atmadini Abdullah
    MyJurnal
    Introduction: The Hedgehog (Hh) signalling pathway is a developmental signalling pathway involved in normal mammalian developmental and homeostasis of adult renewable tissues. In most adult tissues, this pathway remains silent and previous studies have shown that constitutive activation of Hedgehog signalling pathway leads to various types of malignancies including medulloblastomas, basal cell carcinoma, gastrointestinal, breast and prostate cancer. The purpose of this study was to investigate the immunohistochemical expression of Hedgehog pathway proteins in Diffuse Large B-cell Lymphoma and determine their association with overall survival (OS). Methods: Positive control using normal tonsils were included in each batch of immunohistochemical staining procedure. Results: PTCH1 proteins were highly expressed in DLBCL and showed strong staining intensity in 107 (100%) cases and SMO proteins were expressed in 105 (98.1%) cases. PTCH1 proteins were localised in the nucleus of tumour cells, whereas SMO proteins were mainly localised in the cytoplasm of tumour cells. Positive expression of PTCH1 and SMO proteins and overall survival of DLBCL patients were correlated with age, gender, race and tumour location. There was no significant correlation between the expression of these two proteins with any of the parameters. PTCH1 expression showed significant association with SMO expression (P=0.03). Conclusions: Our findings suggest that high expression of both PTCH1 and SMO may be important in the pathogenesis of DLBCL. However, additional mechanisms that may contribute to the activation of HH signalling in DLBCL needs to be further explored.
    Matched MeSH terms: Cell Nucleus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links