Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Wong RS, Radhakrishnan AK, Ibrahim TA, Cheong SK
    Microsc Microanal, 2012 Jun;18(3):462-9.
    PMID: 22640960 DOI: 10.1017/S1431927612000177
    Tocotrienols are isomers of the vitamin E family, which have been reported to exert cytotoxic effects in various cancer cells. Although there have been some reports on the effects of tocotrienols in leukemic cells, ultrastructural evidence of tocotrienol-induced apoptotic cell death in leukemic cells is lacking. The present study investigated the effects of three isomers of tocotrienols (alpha, delta, and gamma) on a human T lymphoblastic leukemic cell line (CEM-SS). Cell viability assays showed that all three isomers had cytotoxic effects (p < 0.05) on CEM-SS cells with delta-tocotrienol being the most potent. Transmission electron microscopy showed that the cytotoxic effects by delta- and gamma-tocotrienols were through the induction of an apoptotic pathway as demonstrated by the classical ultrastructural apoptotic changes characterized by peripheral nuclear chromatin condensation and nuclear fragmentation. These findings were confirmed biochemically by the demonstration of phosphatidylserine externalization via flow cytometry analysis. This is the first study showing classical ultrastructural apoptotic changes induced by delta- and gamma-tocotrienols in human T lymphoblastic leukemic cells.
    Matched MeSH terms: Chromans/toxicity*
  2. Zainuddin A, Chua KH, Tan JK, Jaafar F, Makpol S
    J Physiol Biochem, 2017 Feb;73(1):59-65.
    PMID: 27743340 DOI: 10.1007/s13105-016-0524-2
    Human diploid fibroblasts (HDFs) proliferation in culture has been used as a model of aging at the cellular level. Growth arrest is one of the most important mechanisms responsible for replicative senescence. Recent researches have been focusing on the function of vitamin E in modulating cellular signaling and gene expression. Therefore, the aim of this study was to elucidate the effect of palm γ-tocotrienol (vitamin E) in modulating cellular aging through p16INK4a pathway in HDF cells. Primary culture of senescent HDFs was incubated with 70 μM of palm γ-tocotrienol for 24 hours. Silencing of p16INK4a was carried out by siRNA transfection. RNA was extracted from the different treatment groups and gene expression analysis was carried out by real-time reverse transcription polymerase chain reaction. Proteins that were regulated by p16INK4a were determined by western blot technique. The finding of this study showed that p16INK4a mRNA was overexpressed in senescent HDFs, and hypophosphorylated-pRb and cyclin D1 protein expressions were increased (p 
    Matched MeSH terms: Chromans/metabolism*
  3. Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZ
    Molecules, 2015 Jun 03;20(6):10280-97.
    PMID: 26046324 DOI: 10.3390/molecules200610280
    Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0-150 µg/mL) and 6G (0-300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.
    Matched MeSH terms: Chromans/pharmacology*
  4. Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ
    Oxid Med Cell Longev, 2010 Jan-Feb;3(1):35-43.
    PMID: 20716926 DOI: 10.4161/oxim.3.1.9940
    The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienol prevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.
    Matched MeSH terms: Chromans/pharmacology*
  5. Shuid AN, Mehat Z, Mohamed N, Muhammad N, Soelaiman IN
    J. Bone Miner. Metab., 2010 Mar;28(2):149-56.
    PMID: 19779668 DOI: 10.1007/s00774-009-0122-2
    Recently, vitamin E has been found to promote the bone structure of nicotine-treated rats well above their baseline values, thus suggesting that vitamin E may have some anabolic action. A bone anabolic agent acts by improving the bone structure leading to stronger bone. To assess the possible anabolic action vitamin E on bone, we supplemented alpha-tocopherol (ATF) or gamma-tocotrienol (GTT) at 60 mg/kg or vehicle [normal control (NC) group] for 4 months to normal male rats and measured their bone structure and biomechanical properties. Histomorphometric analysis revealed that vitamin E-supplemented rats have better trabecular volume, thickness, number, and separation than rats receiving vehicle only. For the first time we reported that GTT improves all the parameters of bone biomechanical strength, while ATF only improved some of the parameters compared to the NC group. Vitamin E supplementation, especially with the gamma isomer, improves bone structure, which contributed to stronger bone. Therefore, vitamin E has the potential to be used as an anabolic agent to treat osteoporosis or as bone supplements for young adults to prevent osteoporosis in later years.
    Matched MeSH terms: Chromans/administration & dosage
  6. Abdul Rahman A, Mokhtar NM, Harun R, Jamal R, Wan Ngah WZ
    J Physiol Biochem, 2019 Nov;75(4):499-517.
    PMID: 31414341 DOI: 10.1007/s13105-019-00699-z
    Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.
    Matched MeSH terms: Chromans/pharmacology*
  7. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cell Prolif, 2013 Apr;46(2):203-13.
    PMID: 23510475 DOI: 10.1111/cpr.12014
    OBJECTIVES: Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells.

    MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.

    RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.

    CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.

    Matched MeSH terms: Chromans/pharmacology*; Chromans/chemistry
  8. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

    Matched MeSH terms: Chromans/pharmacology*
  9. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, et al.
    J Med Chem, 1993 Dec 24;36(26):4131-8.
    PMID: 7506311
    As part of a search for novel inhibitors of HIV-1 reverse transcriptase, the acetone extract of the giant African snail, Achatina fulica, was shown to be active. Fractionation of the extract yielded inophyllums A, B, C, and E and calophyllolide (1a, 2a, 3a, 3b, and 6), previously isolated from Calophyllum inophyllum Linn., a known source of nutrition for A. fulica. From a methanol/methylene chloride extract of C. inophyllum, the same natural products in considerably greater yield were isolated in addition to a novel enantiomer of soulattrolide (4), inophyllum P (2b), and two other novel compounds, inophyllums G-1 (7) and G-2 (8). The absolute stereochemistry of inophyllum A (1a) was determined to be 10(R), 11(S), 12(S) from a single-crystal X-ray analysis of its 4-bromobenzoate derivative, and the relative stereochemistries of the other inophyllums isolated from C. inophyllum were established by a comparison of their 1H NMR NOE values and coupling constants to those of inophyllum A (1a). Inophyllums B and P (2a and 2b) inhibited HIV reverse transcriptase with IC50 values of 38 and 130 nM, respectively, and both were active against HIV-1 in cell culture (IC50 of 1.4 and 1.6 microM). Closely related inophyllums A, C, D, and E, including calophyllic acids, were significantly less active or totally inactive, indicating certain structural requirements in the chromanol ring. Altogether, 11 compounds of the inophyllum class were isolated from C. inophyllum and are described together with the SAR of these novel anti-HIV compounds.
    Matched MeSH terms: Chromans/isolation & purification*; Chromans/pharmacology; Chromans/chemistry
  10. Ng MH, Kushairi A
    Molecules, 2017 Aug 29;22(9).
    PMID: 28850073 DOI: 10.3390/molecules22091424
    There are six tocol analogs present in palm oil, namely α-tocopherol (α-T), α-tocomonoenol (α-T₁), α-tocotrienol (α-T₃), γ-tocotrienol (γ-T₃), β-tocotrioenol (β-T₃) and δ-tocotrienol (δ-T₃). These analogs were difficult to separate chromatographically due to their similar structures, physical and chemical properties. This paper reports on the effect of pressure and injection solvent on the separation of the tocol analogs in palm oil. Supercritical CO₂ modified with ethanol was used as the mobile phase. Both total elution time and resolution of the tocol analogs decreased with increased pressure. Ethanol as an injection solvent resulted in peak broadening of the analogs within the entire pressure range studied. Solvents with an eluent strength of 3.4 or less were more suitable for use as injecting solvents.
    Matched MeSH terms: Chromans/isolation & purification; Chromans/chemistry
  11. Yusof KM, Makpol S, Fen LS, Jamal R, Wan Ngah WZ
    J Nat Med, 2019 Sep;73(4):745-760.
    PMID: 31177355 DOI: 10.1007/s11418-019-01323-6
    Our previous study reported that combined treatment of γ-tocotrienol with 6-gingerol showed promising anticancer effects by synergistically inhibiting proliferation of human colorectal cancer cell lines. This study aimed to identify and elucidate molecular mechanisms involved in the suppression of SW837 colorectal cancer cells modulated by combined treatment of γ-tocotrienol and 6-gingerol. Total RNA from both untreated and treated cells was prepared for transcriptome analysis using RNA sequencing techniques. We performed high-throughput sequencing at approximately 30-60 million coverage on both untreated and 6G + γT3-treated cells. The results showed that cancer-specific differential gene expression occurred and functional enrichment pathway analysis suggested that more than one pathway was modulated in 6G + γT3-treated cells. Combined treatment with 6G + γT3 augmented its chemotherapeutic effect by interfering with the cell cycle process, downregulating the Wnt signalling pathway and inducing apoptosis mainly through caspase-independent programmed cell death through mitochondrial dysfunction, activation of ER-UPR, disruption of DNA repair mechanisms and inactivation of the cell cycle process through the downregulation of main genes in proliferation such as FOXM1 and its downstream genes. The combined treatment exerted its cytotoxic effect through upregulation of genes in stress response activation and cytostatic effects demonstrated by downregulation of main regulator genes in the cell cycle. Selected genes involved in particular pathways including ATF6, DDIT3, GADD34, FOXM1, CDK1 and p21 displayed concordant patterns of gene expression between RNA sequencing and RT-qPCR. This study provides new insights into combined treatment with bioactive compounds not only in terms of its pleiotropic effects that enhance multiple pathways but also specific target genes that could be exploited for therapeutic purposes, especially in suppressing cancer cell growth.
    Matched MeSH terms: Chromans
  12. M Hussain FB, Al-Khdhairawi AAQ, Kok Sing H, Muhammad Low AL, Anouar EH, Thomas NF, et al.
    J Nat Prod, 2020 12 24;83(12):3493-3501.
    PMID: 33233893 DOI: 10.1021/acs.jnatprod.9b01105
    Svalbardines A and B (1 and 2) and annularin K (3) were isolated from cultures of Poaceicola sp. E1PB, an endophyte isolated from the petals of Papaver dahlianum from Svalbard, Norway. Svalbardine A (1) is a pyrano[3,2-c]chromen-4-one, a new analogue of citromycetin. Svalbardine B (2) displays an unprecedented carbon skeleton based on a 5'-benzyl-spiro[chroman-3,7'-isochromene]-4,8'-dione core. Annularin K (3) is a hydroxylated derivative of annularin D. The structure of these new polyketides, along with those of known compounds 4-6, was established by spectrometric analysis, including extensive ESI-CID-MS
    n
    processing in the case of svalbardine B (2).
    Matched MeSH terms: Chromans
  13. H-E. Khoo, Azlan A, Ismail A, Abas F
    Sains Malaysiana, 2013;42:949-954.
    This study aimed to determine the total phenolics and antioxidant capacity of defatted dabai parts based on liquid extraction and optimized using response surface methodology (RSM). A two-level factorial design was applied to determine the effect of two independent variables (extraction time: X1 and % methanol: X2) on three response variables (total phenolic content: Y1, total flavonoid/anthocyanin content: Y2 and Trolox equivalent antioxidant capacity: Y3). The optimum conditions for extraction time and percent methanol were 36 min or 1 min and 62.25% or 53% for the defatted dabai pulp or peel, respectively. The RSM optimized extraction was compared with sonication-assisted extraction. Optimization results showed that defatted dabai parts had high total phenolic content and antioxidant capacity. Sonication-assisted extraction utilized the optimized extraction conditions had further increased the total phenolic content and antioxidant capacity of defatted dabai peel, but not in the pulp. Therefore, optimization of different extraction methods for the defatted fruit parts is recommended for future studies.
    Matched MeSH terms: Chromans
  14. Rodzian MN, Aziz Ibrahim IA, Nur Azlina MF, Nafeeza MI
    Pol J Pathol, 2013 Apr;64(1):52-8.
    PMID: 23625601
    Stress has been implicated as a risk factor of various major health problems, such as stress-induced gastric mucosal injury. This study was performed to investigate the action of a pure preparation of tocotrienol (T3) concentrate, made up of 90% δ-tocotrienol and 10% γ-tocotrienol, on gastric injury of rats induced by water-immersion restraint stress (WIRS). Fourteen male Sprague-Dawley rats (200-250 g) were divided into two equal groups: a control group and a treated group. The treatment group received T3 concentrate at 60 mg/kg body weight daily for 28 days. The body weights of rats were recorded daily before the treatment was given. At the end of the treatment period, all rats were subjected to WIRS for 3.5 hours, following which the rats were euthanized. The stomachs were isolated and opened along the greater curvature for the examination of lesions and measurements of gastric malondialdehyde (MDA) and prostaglandin E₂ (PGE₂) contents. The mean gastric mucosal lesion index in the treated rats was significantly lower than that in the control rats. This suggests that the T3 concentrate has the ability to confer protection to the gastric mucosa against gastric injury induced by acute stress. No significant difference was observed for changes in body weight before and after the treatment. The gastric PGE2 content in both groups was comparable. However, the gastric MDA content was significantly higher in the treated group compared to the control group, indicating that the T3 supplementation was not able to reduce the lipid peroxidation process. This study concludes that the T3 concentrate has the ability to protect the gastric mucosa from stress-induced injury by a non-antioxidant mechanism.
    Matched MeSH terms: Chromans/pharmacology
  15. Tan JK, Jaafar F, Makpol S
    BMC Complement Altern Med, 2018 Nov 29;18(1):314.
    PMID: 30497457 DOI: 10.1186/s12906-018-2383-6
    BACKGROUND: Replicative senescence of human diploid fibroblasts (HDFs) has been used as a model to study mechanisms of cellular aging. Gamma-tocotrienol (γT3) is one of the members of vitamin E family which has been shown to increase proliferation of senescent HDFs. However, the modulation of protein expressions by γT3 in senescent HDFs remains to be elucidated. Therefore, this study aimed to determine the differentially expressed proteins (DEPs) in young and senescent HDFs; and in vehicle- and γT3-treated senescent HDFs using label-free quantitative proteomics.

    METHODS: Whole proteins were extracted and digested in-gel with trypsin. Peptides were detected by Orbitrap liquid chromatography mass spectrometry. Mass spectra were identified and quantitated by MaxQuant software. The data were further filtered and analyzed statistically using Perseus software to identify DEPs. Functional annotations of DEPs were performed using Panther Classification System.

    RESULTS: A total of 1217 proteins were identified in young and senescent cells, while 1218 proteins in vehicle- and γT3-treated senescent cells. 11 DEPs were found in young and senescent cells which included downregulation of platelet-derived growth factor (PDGF) receptor beta and upregulation of tubulin beta-2A chain protein expressions in senescent cells. 51 DEPs were identified in vehicle- and γT3-treated senescent cells which included upregulation of 70 kDa heat shock protein, triosephosphate isomerase and malate dehydrogenase protein expressions in γT3-treated senescent cells.

    CONCLUSIONS: PDGF signaling and cytoskeletal structure may be dysregulated in senescent HDFs. The pro-proliferative effect of γT3 on senescent HDFs may be mediated through the stimulation of cellular response to stress and carbohydrate metabolism. The expressions and roles of these proteins in relation to cellular senescence are worth further investigations. Data are available via ProteomeXchange with identifier PXD009933.

    Matched MeSH terms: Chromans/pharmacology*
  16. Lai LC
    Malays J Pathol, 2002 Dec;24(2):71-6.
    PMID: 12887163
    The prevalence of diabetes is increasing worldwide. The World Health Organisation has estimated that there will be around 300 million diabetics by 2025. The largest increase will occur in Asia. The prevalence of type 2 diabetes is increasing due to a combination of factors: increasing lifespan, sedentary lifestyle, excessive intake of high energy foods, increasing prevalence of overweight/obese people. The Finnish Diabetes Prevention Study Group has clearly shown that changes in the lifestyle of both overweight men and women with impaired glucose tolerance can reduce the incidence of type 2 diabetes by 58%. This finding was confirmed by the Diabetes Prevention Programme which found that lifestyle intervention in individuals with impaired fasting glucose or impaired glucose tolerance reduced the risk of developing type 2 diabetes by 58%, whereas treatment with metformin reduced the risk of type 2 diabetes by only 31%. Both acarbose and troglitazone have also been shown to reduce the progression to diabetes in individuals who are at high risk of developing type 2 diabetes. Since the cure for diabetes remains some way off our concerted efforts should be directed at prevention of diabetes in order to curb the increasing prevalence of diabetes worldwide. Lifestyle changes are more beneficial than long term drug therapy in the prevention of diabetes and should be actively promoted.
    Matched MeSH terms: Chromans/therapeutic use
  17. Brandon Yeo Pei Hui, Siaw San Hwang, Mrinal Bhave
    Trop Life Sci Res, 2019;30(2):1-20.
    MyJurnal
    Doxorubicin (DOX) adalah salah satu ubat kemoterapi yang paling berkesan untuk merawat pelbagai neoplasma seperti leukemia, limfoma dan kanser payudara. Walau bagaimanapun, ia sering dikaitkan dengan kardiomiopati. Pada masa ini, tiada rawatan yang sesuai untuk mengurangkan kesan kardiomiopati tanpa kesan sampingan yang ketara. Oleh itu, kajian ini bertujuan untuk mengkaji kesan-kesan perlindungan potensi ekstrak benih padi (RSE) terhadap kesitotoksikan yang disebabkan oleh DOX menggunakan kajian kultur sel vitro. Keupayaan antioksidan RSE dinilai, dan hasilnya menunjukkan jumlah kandungan fenolik yang lebih rendah (TPC), tetapi jumlah kandungan flavonoid total (TFC) dan kapasiti antioksidan yang setara trolox (TEAC), dibandingkan dengan ekstrak benih wheatgrass. Satu siri eksperimen spektroskopi penyerapan dan pendarfluor menunjukkan bahawa RSE boleh menghalang pembentukan kompleks DOX-DNA pada kepekatan yang diuji. Tambahan pula, daya maju sel kardiomiosit sel, H9c2 (2-1), telah diuji selepas 24, 48 dan 72 jam rawatan DOX terhadap RSE menggunakan ujian proliferasi sel berdasarkan garam tetrazolium (MTS reagent). Hasilnya menunjukkan kesan perlindungan yang signifikan terhadap RSE terhadap kesitotoksikan yang disebabkan oleh DOX. Jalur sel karsinoma nasofarinks, HK1, digunakan sebagai kawalan untuk menentukan sama ada keberkesanan DOX terjejas oleh pentadbiran bersama RSE. Hasilnya tidak menunjukkan kesan negatif terhadap keberkesanan dadah. Pelbagai sifat berfaedah RSE menunjukkan potensi kuatnya untuk membangunkan agen kardioprotektif untuk melengkapi rawatan DOX dalam tetapan klinikal.
    Matched MeSH terms: Chromans
  18. Zahara AM, Lee CC, Fatimah IS, Poh BK, Khairul O, Das S, et al.
    Clin Ter, 2010;161(2):121-4.
    PMID: 20499024
    Intake of the antioxidant vitamins C and E lowers the oxidative stress. The study aimed to determine plasma concentrations of vitamin C and tocotrienols after supplementation of both vitamins in young male adults.
    Matched MeSH terms: Chromans
  19. Lim SH, Fan SH, Say YH
    Malays J Nutr, 2012 Dec;18(3):345-54.
    PMID: 24568075 MyJurnal
    INTRODUCTION: There is a pressing need to better understand the complex biochemical pathways that lead to the pathogenesis of obesity. Increased oxidative stress and decreased antioxidant capacity have been identified to be associated with obesity. Therefore, the objectives of this study were to determine the plasma total antioxidant capacity (TAC) levels of Malaysian subjects and to evaluate its potential association with obesity and related anthropometric measurements.
    METHODS: Plasma TAC of 362 multi-ethnic Malaysian subjects from the Kampar Health Clinic (138 males, 224 females; 124 ethnic Malays, 152 Chinese, 86 Indians; 192 non-obese, 170 obese) was measured using Trolox equivalent antioxidant capacity (TEAC) 96-well plate assay.
    RESULTS: Plasma TAC was significantly lower in obese subjects (M +/- SE = 292 +/- 10.4 micromol/L) compared to non-obese subjects (397 +/- 8.58 micromol/L), whereas it was significantly higher in males and those in the 21-30 age group. Those with salty food preference and practising a strict vegetarian diet also had significantly higher plasma TAC. However, no association was found for other dietary habits (coffee intake) and lifestyle factors (physical activity, smoking). Plasma TAC was also significantly negatively correlated with diastolic blood pressure, waist and hip circumferences, weight, body mass index, total body fat, % subcutaneous fat, visceral fat level, resting metabolism and % skeletal muscle.
    CONCLUSION: Plasma TAC was found to be associated with obesity, strict vegetarian practice, salty food preference and all obesity anthropometric indicators, except systolic blood pressure and pulse rate. Obese people have decreased plasma TAC indicating a compromised systemic antioxidant defence and increased oxidative stress.
    Matched MeSH terms: Chromans
  20. Yap SP, Yuen KH, Wong JW
    J Pharm Pharmacol, 2001 Jan;53(1):67-71.
    PMID: 11206194
    We have investigated the pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under fed and fasted conditions in eight healthy volunteers. The volunteers were administered a single oral dose of mixed tocotrienols (300 mg) under fed or fasted conditions. The bioavailability of tocotrienols under the two conditions was compared using the parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax) and total area under the plasma concentration-time curve (AUC(o-infinity)). A statistically significant difference was observed between the fed and fasted logarithmic transformed values of Cmax (P < 0.01) and AUC(0-infinity) (P < 0.01) for all three tocotrienols. In addition, the 90% confidence intervals for the ratio of the logarithmic transformed AUC(0-infinity) values of alpha-, gamma- and delta-tocotrienols under the fed state over those of the fasted state were found to lie between 2.24-3.40, 2.05-4.09 and 1.59-3.81, respectively, while those of the Cmax were between 2.28-4.39, 2.31-5.87 and 1.52-4.05, respectively. However, no statistically significant difference was observed between the fed and fasted Tmax values of the three homologues. The mean apparent elimination half-life (t(1/2)) of alpha-, gamma- and delta-tocotrienols was estimated to be 4.4, 4.3 and 2.3 h, respectively, being between 4.5- to 8.7-fold shorter than that reported for alpha-tocopherol. No statistically significant difference was observed between the fed and fasted t(1/2) values. The mean apparent volume of distribution (Vd/f) values under the fed state were significantly smaller than those of the fasted state, which could be attributed to increased absorption of the tocotrienols in the fed state.
    Matched MeSH terms: Chromans/pharmacokinetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links