Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Cognition/drug effects
  2. You YX, Shahar S, Rajab NF, Haron H, Yahya HM, Mohamad M, et al.
    Nutrients, 2021 Jan 29;13(2).
    PMID: 33572715 DOI: 10.3390/nu13020434
    Cosmos caudatus (CC) contains high flavonoids and might be beneficial in neuroprotection. It has the potential to prevent neurodegenerative diseases. Therefore, we aimed to investigate the effects of 12 weeks of Cosmos caudatus supplement on cognitive function, mood status, blood biochemical profiles and biomarkers among older adults with mild cognitive impairment (MCI) through a double-blind, placebo-controlled trial. The subjects were randomized into CC supplement (n = 24) and placebo group (n = 24). Each of them consumed one capsule of CC supplement (250 mg of CC/capsule) or placebo (500 mg maltodextrin/capsule) twice daily for 12 weeks. Cognitive function and mood status were assessed at baseline, 6th week, and 12th week using validated neuropsychological tests. Blood biochemical profiles and biomarkers were measured at baseline and 12th week. Two-way mixed analysis of variance (ANOVA) analysis showed significant improvements in mini mental state examination (MMSE) (partial η2 = 0.150, p = 0.049), tension (partial η2 = 0.191, p = 0.018), total mood disturbance (partial η2 = 0.171, p = 0.028) and malondialdehyde (MDA) (partial η2 = 0.097, p = 0.047) following CC supplementation. In conclusion, 12 weeks CC supplementation potentially improved global cognition, tension, total mood disturbance, and oxidative stress among older adults with MCI. Larger sample size and longer period of intervention with incorporation of metabolomic approach should be conducted to further investigate the underlying mechanism of CC supplementation in neuroprotection.
    Matched MeSH terms: Cognition/drug effects
  3. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

    Matched MeSH terms: Cognition/drug effects
  4. Wajs E, Aluisio L, Holder R, Daly EJ, Lane R, Lim P, et al.
    J Clin Psychiatry, 2020 04 28;81(3).
    PMID: 32316080 DOI: 10.4088/JCP.19m12891
    OBJECTIVE: To evaluate long-term safety and efficacy of esketamine nasal spray plus a new oral antidepressant (OAD) in patients with treatment-resistant depression (TRD).

    METHODS: This phase 3, open-label, multicenter, long-term (up to 1 year) study was conducted between October 2015 and October 2017. Patients (≥ 18 years) with TRD (DSM-5 diagnosis of major depressive disorder and nonresponse to ≥ 2 OAD treatments) were enrolled directly or transferred from a short-term study (patients aged ≥ 65 years). Esketamine nasal spray (28-mg, 56-mg, or 84-mg) plus new OAD was administered twice a week in a 4-week induction (IND) phase and weekly or every-other-week for patients who were responders and entered a 48-week optimization/maintenance (OP/MAINT) phase.

    RESULTS: Of 802 enrolled patients, 86.2% were direct-entry and 13.8% were transferred-entry; 580 (74.5%) of 779 patients who entered the IND phase completed the phase, and 150 (24.9%) of 603 who entered the OP/MAINT phase completed the phase. Common treatment-emergent adverse events (TEAEs) were dizziness (32.9%), dissociation (27.6%), nausea (25.1%), and headache (24.9%). Seventy-six patients (9.5%) discontinued esketamine due to TEAEs. Fifty-five patients (6.9%) experienced serious TEAEs. Most TEAEs occurred on dosing days, were mild or moderate in severity, and resolved on the same day. Two deaths were reported; neither was considered related to esketamine. Cognitive performance generally either improved or remained stable postbaseline. There was no case of interstitial cystitis or respiratory depression. Treatment-emergent dissociative symptoms were transient and generally resolved within 1.5 hours postdose. Montgomery-Åsberg Depression Rating Scale total score decreased during the IND phase, and this reduction persisted during the OP/MAINT phase (mean [SD] change from baseline of respective phase to endpoint: IND, -16.4 [8.76]; OP/MAINT, 0.3 [8.12]).

    CONCLUSIONS: Long-term esketamine nasal spray plus new OAD therapy had a manageable safety profile, and improvements in depression appeared to be sustained in patients with TRD.

    TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02497287.

    Matched MeSH terms: Cognition/drug effects
  5. Tadokoro K, Ohta Y, Inufusa H, Loon AFN, Abe K
    Int J Mol Sci, 2020 Mar 13;21(6).
    PMID: 32183152 DOI: 10.3390/ijms21061974
    Oxidative stress plays a crucial role in Alzheimer's disease (AD) from its prodromal stage of mild cognitive impairment. There is an interplay between oxidative stress and the amyloid β (Aβ) cascade via various mechanisms including mitochondrial dysfunction, lipid peroxidation, protein oxidation, glycoxidation, deoxyribonucleotide acid damage, altered antioxidant defense, impaired amyloid clearance, inflammation and chronic cerebral hypoperfusion. Based on findings that indicate that oxidative stress plays a major role in AD, oxidative stress has been considered as a therapeutic target of AD. In spite of favorable preclinical study outcomes, previous antioxidative components, including a single antioxidative supplement such as vitamin C, vitamin E or their mixtures, did not clearly show any therapeutic effect on cognitive decline in AD. However, novel antioxidative supplements can be beneficial for AD patients. In this review, we summarize the interplay between oxidative stress and the Aβ cascade, and introduce novel antioxidative supplements expected to prevent cognitive decline in AD.
    Matched MeSH terms: Cognition/drug effects*
  6. Mohan D, Yap KH, Reidpath D, Soh YC, McGrattan A, Stephan BCM, et al.
    J Alzheimers Dis, 2020;76(4):1347-1373.
    PMID: 32675410 DOI: 10.3233/JAD-191339
    BACKGROUND: A key focus for dementia risk-reduction is the prevention of socio-demographic, lifestyle, and nutritional risk factors. High sodium intake is associated with hypertension and cardiovascular disease (both are linked to dementia), generating numerous recommendations for salt reduction to improve cardiovascular health.

    OBJECTIVE: This systematic review aimed to assess, in middle- and older-aged people, the relationship between dietary sodium intake and cognitive outcomes including cognitive function, risk of cognitive decline, or dementia.

    METHODS: Six databases (PubMed, EMBASE, CINAHL, Psych info, Web of Science, and Cochrane Library) were searched from inception to 1 March 2020. Data extraction included information on study design, population characteristics, sodium reduction strategy (trials) or assessment of dietary sodium intake (observational studies), measurement of cognitive function or dementia, and summary of main results. Risk-of-bias assessments were performed using the National Heart, Lung, and Blood Institute (NHLBI) assessment tool.

    RESULTS: Fifteen studies met the inclusion criteria including one clinical trial, six cohorts, and eight cross-sectional studies. Studies reported mixed associations between sodium levels and cognition. Results from the only clinical trial showed that a lower sodium intake was associated with improved cognition over six months. In analysis restricted to only high-quality studies, three out of four studies found that higher sodium intake was associated with impaired cognitive function.

    CONCLUSION: There is some evidence that high salt intake is associated with poor cognition. However, findings are mixed, likely due to poor methodological quality, and heterogeneous dietary, analytical, and cognitive assessment methods and design of the studies. Reduced sodium intake may be a potential target for intervention. High quality prospective studies and clinical trials are needed.

    Matched MeSH terms: Cognition/drug effects*
  7. Tan BL, Norhaizan ME
    Nutrients, 2019 Oct 25;11(11).
    PMID: 31731503 DOI: 10.3390/nu11112579
    Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.
    Matched MeSH terms: Cognition/drug effects*
  8. Lew LC, Hor YY, Yusoff NAA, Choi SB, Yusoff MSB, Roslan NS, et al.
    Clin Nutr, 2019 10;38(5):2053-2064.
    PMID: 30266270 DOI: 10.1016/j.clnu.2018.09.010
    BACKGROUND & AIMS: To investigate the effects of probiotic in alleviation of stress in stressed adults, along our focus to identify and justify strain specificity on selected health benefits with a precisely targeted population.

    METHODS: This 12-weeks randomized, double-blind and placebo-controlled study investigated the effects of a probiotic (Lactobacillus plantarum P8; 10 log CFU daily) on psychological, memory and cognition parameters in one hundred and three (P8 n = 52, placebo n = 51) stressed adults with mean age of 31.7 ± 11.1 years old. All subjects fulfilled the criteria of moderate stress upon diagnosis using the PSS-10 questionnaire.

    RESULTS: At the end of study, subjects on P8 showed reduced scores of stress (mean difference 2.94; 95% CI 0.08 to 5.73; P = 0.048), anxiety (mean difference 2.82; 95% CI 0.35 to 5.30; P = 0.031) and total score (mean difference 8.04; 95% CI 0.73 to 15.30; P = 0.041) as compared to placebo after 4-weeks, as assessed by the DASS-42 questionnaire. Although plasma cortisol levels were only marginally different between placebo and P8 (mean difference 3.28 ug/dl; 95% CI -7.09 to 0.52; P = 0.090), pro-inflammatory cytokines such as IFN-γ (mean difference 8.07 pg/ml; 95% CI -11.2 to -4.93; P 

    Matched MeSH terms: Cognition/drug effects*
  9. Singh D, Narayanan S, Müller CP, Vicknasingam B, Yücel M, Ho ETW, et al.
    J Psychoactive Drugs, 2018 12 15;51(1):19-27.
    PMID: 30556488 DOI: 10.1080/02791072.2018.1555345
    Kratom or Mitragyna speciosa (Korth.) is a medicinal plant of Southeast Asia. As a result of its opioid-like effects, it remains unknown whether consumption of kratom tea is associated with impaired cognitive function. We assessed the cognitive function of 70 regular kratom users and 25 control participants using the Cambridge Neuropsychological Test Automated Battery. Participants performed six neuropsychological tasks that assessed motor, learning and memory, attention and executive function. Relative to control participants, higher consumption (>3 glasses daily or mitragynine doses between 72.5 mg and 74.9 mg) of kratom tea was selectively associated with impaired performance on the Paired Associates Learning task, reflecting deficits in visual episodic memory and new learning. Overall, the performance of kratom users compared to control participants, and the performance of high (>3 glasses per day) as well as low (≤3 glasses per day) kratom using groups, were comparable on all neuropsychological domains. Higher intake of kratom juice (>3 glasses daily) did not appear to impair motor, memory, attention or executive function of regular kratom users.
    Matched MeSH terms: Cognition/drug effects*
  10. Chin CN, Zain A, Hemrungrojn S, Ung EK, Kwansanit P, Au Yong KC, et al.
    Curr Med Res Opin, 2018 11;34(11):1975-1984.
    PMID: 29768955 DOI: 10.1080/03007995.2018.1477746
    OBJECTIVE: The REVIDA study aimed to assess the evolution of major depression symptoms in South East Asian (SEA) patients treated with vortioxetine for major depression in real-world clinical practice.

    METHODS: This non-interventional study was conducted from August 2016 to April 2017. A total of 138 patients (aged 18-65 years) with an active episode of major depression were recruited from Malaysia, Philippines, Singapore and Thailand. Vortioxetine was initiated on the first visit and patients were followed for 3 months. Depression severity was assessed using the PHQ-9 questionnaire (patient assessed) and CGI-S scale (physician assessed); cognitive function was assessed with the PDQ-D questionnaire; work productivity and activity impairment (WPAI) was assessed with the WPAI questionnaire.

    RESULTS: At baseline, 89.9% of patients were moderately to severely depressed (PHQ-9 score ≥10). During the 3 month treatment period, mean ± SD PHQ-9 score decreased from 18.7 ± 5.7 to 5.0 ± 5.3, mean ± SD CGI-S score decreased from 4.4 ± 0.7 to 2.2 ± 1.1 and mean ± SD PDQ-D score decreased from 42.1 ± 18.8 to 13.4 ± 13.0. By Month 3, response and remission rates reached 80.8% and 59.0%, respectively. Work productivity loss decreased from 73.6% to 30.5%, while activity impairment decreased from 71.5% to 24.6%. Positive correlations were observed between PHQ-9, PDQ-D, and WPAI work productivity loss and activity impairment. By Month 3, 82.0% of patients were either not depressed or only mildly depressed (PHQ-9 score ≤9).

    CONCLUSION: In real-world clinical settings, vortioxetine was effective in reducing depression severity and improving cognitive function and work productivity in SEA patients with major depression.

    Matched MeSH terms: Cognition/drug effects*
  11. Nguyen TA, Pham T, Vu HTT, Nguyen TX, Vu TT, Nguyen BTT, et al.
    Am J Alzheimers Dis Other Demen, 2018 Nov;33(7):423-432.
    PMID: 29642720 DOI: 10.1177/1533317518768999
    This study examined the use of potentially inappropriate medicines that may affect cognition (PIMcog) in people with dementia and its associated factors. Medical records of all outpatients with dementia attending a tertiary hospital in Vietnam between January 1, 2015, and December 31, 2016, were examined. Medicine use was assessed against a list of PIMcog. Variables associated with having a PIMcog were assessed using a multiple logistic regression. Of the 128 patients, 41% used a PIMcog, 39.1% used cholinesterase inhibitors (CEIs) concomitantly with anticholinergics, and 18% used antipsychotics. The number of hospital visits (adjusted odds ratio [OR]: 1.08; 95% confidence interval [CI]: 1.02-1.16) and number of treating specialists (adjusted OR: 0.61; 95% CI: 0.45-0.83) were associated with PIMcog use. This study highlights a high-level use of medicines that can further impair cognition or reduce the effectiveness of CEIs in people with dementia. Efforts to improve quality use of medicines for this population are warranted.
    Matched MeSH terms: Cognition/drug effects
  12. Andy SN, Pandy V, Alias Z, Kadir HA
    Life Sci, 2018 Aug 01;206:45-60.
    PMID: 29792878 DOI: 10.1016/j.lfs.2018.05.035
    AIM: Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model.

    MATERIALS AND METHODS: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.

    KEY FINDINGS: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.

    SIGNIFICANCE: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.

    Matched MeSH terms: Cognition/drug effects
  13. Chin KY, Tay SS
    Nutrients, 2018 Jul 09;10(7).
    PMID: 29987193 DOI: 10.3390/nu10070881
    Alzheimer’s disease (AD) is plaguing the aging population worldwide due to its tremendous health care and socioeconomic burden. Current treatment of AD only offers symptomatic relief to patients. Development of agents targeting specific pathologies of AD is very slow. Tocotrienol, a member of the vitamin E family, can tackle many aspects of AD, such as oxidative stress, mitochondrial dysfunction and abnormal cholesterol synthesis. This review summarizes the current evidence on the role of tocotrienol as a neuroprotective agent. Preclinical studies showed that tocotrienol could reduce oxidative stress by acting as a free-radical scavenger and promoter of mitochondrial function and cellular repair. It also prevented glutamate-induced neurotoxicity in the cells. Human epidemiological studies showed a significant inverse relationship between tocotrienol levels and the occurrence of AD. However, there is no clinical trial to support the claim that tocotrienol can delay or prevent the onset of AD. As a conclusion, tocotrienol has the potential to be developed as an AD-preventing agent but further studies are required to validate its efficacy in humans.
    Matched MeSH terms: Cognition/drug effects*
  14. Suliman NA, Taib CNM, Moklas MAM, Basir R
    Neurotox Res, 2018 02;33(2):402-411.
    PMID: 28933048 DOI: 10.1007/s12640-017-9806-x
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.
    Matched MeSH terms: Cognition/drug effects*
  15. Mohamad NV, Ima-Nirwana S, Chin KY
    Curr Drug Targets, 2018;19(8):898-906.
    PMID: 28914204 DOI: 10.2174/1389450118666170913162739
    Cognitive function and testosterone level of men decline concurrently with age. Low testosterone levels are associated with higher risk of Alzheimer's disease and mild cognitive impairment in men. There are continuous debates on whether this relationship is casual. This paper aims to summarize the current evidence on the association between testosterone level and cognitive function in elderly men. The presence of testosterone, androgen receptor and its responsive genes indicates that testosterone has biological functions in the central nervous system. The ability of the body to convert testosterone into estrogen suggests that part of the actions of testosterone could be mediated by estrogen. Observational studies generally showed that low endogenous testosterone levels were associated with poor cognitive performance in healthy elderly men. Testosterone substitution exerted positive effects on certain cognitive domains in normal and hypogonadal elderly men. In conclusion, testosterone may influence cognitive function in elderly men and its substitution may be considered in men with cognitive impairment and testosterone deficiency.
    Matched MeSH terms: Cognition/drug effects
  16. Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K
    Pharm Biol, 2017 Dec;55(1):825-832.
    PMID: 28118770 DOI: 10.1080/13880209.2017.1280688
    CONTEXT: Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties.

    OBJECTIVE: Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo.

    MATERIALS AND METHODS: Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes.

    RESULTS: VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT.

    DISCUSSION AND CONCLUSION: VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

    Matched MeSH terms: Cognition/drug effects
  17. Puttarak P, Dilokthornsakul P, Saokaew S, Dhippayom T, Kongkaew C, Sruamsiri R, et al.
    Sci Rep, 2017 09 06;7(1):10646.
    PMID: 28878245 DOI: 10.1038/s41598-017-09823-9
    Centella asiatica (L.) Urb. has been used as an herbal brain tonic for mental disorders and enhancing memory, but no review of the overall evidence of C. asiatica and cognitive function has been conducted. This study aims to determine the effects of C. asiatica on cognitive function and its related properties. The current systematic review includes five randomized controlled trials (RCTs) conducted to determine the effect of C. asiatica alone and six RCTs conducted to determine the effect of C. asiatica-containing products. Meta-analysis indicated that there are no significant differences in all cognitive function domains of C. asiatica when compared to placebo. However, it could improve mood by increasing alert scores [SMD: 0.71 (95% CI; 0.01 to 1.41); I2 = 30.5%] and decreasing anger scores at 1 hour after treatment [SMD: -0.81 (95%CI; -1.51 to -0.09); I2 = 36.6%]. None of the studies reported adverse effects of C. asiatica. In conclusion, there is not strong evidence to support the use of C. asiatica for cognitive function improvement in each cognitive domain. C. asiatica could improve alertness and relieve anger. However, some limitations should be aware including dose regimen, plant preparation, standardization, and product variation. Future well-designed clinical trials using suitable doses of standardized C. asiatica are still needed.
    Matched MeSH terms: Cognition/drug effects*
  18. Chooi WT, Mohd Zaharim N, Desrosiers A, Ahmad I, Yasin MAM, Syed Jaapar SZ, et al.
    J Psychoactive Drugs, 2017 06 29;49(4):326-332.
    PMID: 28661714 DOI: 10.1080/02791072.2017.1342152
    Amphetamine-type stimulants (ATS) use is increasingly prevalent in Malaysia, including among individuals who also use opioids. We evaluated cognitive functioning profiles among individuals with co-occurring opioid and ATS dependence and their lifetime patterns of drug use. Participants (N = 50) enrolling in a clinical trial of buprenorphine/naloxone treatment with or without atomoxetine completed the Raven's Standard Progressive Matrices, Rey-Osterrieth Complex Figure Test, Digit Span, Trail Making and Symbol Digit Substitution tasks. Multidimensional scaling and a K-means cluster analyses were conducted to classify participants into lower versus higher cognitive performance groups. Subsequently, analyses of variance procedures were conducted to evaluate between group differences on drug use history and demographics. Two clusters of individuals with distinct profiles of cognitive performance were identified. The age of ATS use initiation, controlling for the overall duration of drug use, was significantly earlier in the lower than in the higher cognitive performance cluster: 20.9 (95% CI: 18.0-23.8) versus 25.2 (95% CI: 22.4-28.0, p = 0.038). While adverse effects of ATS use on cognitive functioning can be particularly pronounced with younger age, potentially related to greater vulnerability of the developing brain to stimulant and/or neurotoxic effects of these drugs, the current study findings cannot preclude lowered cognitive performance before initiation of ATS use.
    Matched MeSH terms: Cognition/drug effects*
  19. Meramat A, Rajab NF, Shahar S, Sharif RA
    J Nutr Health Aging, 2017;21(5):539-545.
    PMID: 28448084 DOI: 10.1007/s12603-016-0759-1
    BACKGROUND: A cross sectional study was conducted in a group of 317 subjects older than 60 in Malaysia, aimed to determine risk factors associated with cognitive impairment in older adults, focusing on trace elements and DNA damage.

    METHOD: Cognitive decline was determined by Montreal Cognitive Assessment (MoCA). Oxidative stress markers (malondialdehyde-MDA and superoxide dismutase-SOD) were determined and DNA damage was assayed using Alkaline Comet Assay. Toenail samples were taken and analyzed using ICP-MS to determine trace element levels.

    RESULTS: A total of 62.1 % of subjects had cognitive impairment. Subjects with cognitive impairment had significantly higher levels of MDA and DNA damage as compared to the group with normal cognitive function; MDA (2.07 ± 0.05 nmol/L vs 1.85 ± 0.06 nmol/L) (p<0.05) and DNA damage (% Tail Density, 14.52 ± 0.32 vs 10.31 ± 0.42; Tail Moment, 1.79 ± 0.06 vs 1.28 ± 0.06) (p<0.05 for all parameters). However, the level of SOD among subjects with cognitive impairment (6.67 ± 0.33 u.e/min/mg protein) was lower than the level among those with normal cognitive functions (11.36 ± 0.65 u.e/min/mg protein) (p<0.05). Multiple logistic regression revealed the predictors for cognitive impairment among the subjects were DNA damage (Adjusted odd ratio [OR], 1.37; 95% confidence interval [CI], 1.18-1.59), level of trace elements in toenails namely, lead (OR, 2.471; CI, 1.535-3.980) and copper (OR, 1.275; CI, 1.047-1.552) (p<0.05).

    CONCLUSION: High levels of lead and copper can lead to increase in oxidative stress levels and are associated with DNA damage that eventually could be associated with cognitive decline.

    Matched MeSH terms: Cognition/drug effects*
  20. Meganathan P, Fu JY
    Int J Mol Sci, 2016 Oct 26;17(11).
    PMID: 27792171
    Vitamin E has been recognized as an essential vitamin since their discovery in 1922. Although the functions of tocopherols are well established, tocotrienols have been the unsung heroes of vitamin E. Due to their structural differences, tocotrienols were reported to exert distinctive properties compared to tocopherols. While most vegetable oils contain higher amount of tocopherols, tocotrienols were found abundantly in palm oil. Nature has made palm vitamin E to contain up to 70% of total tocotrienols, among which alpha-, gamma- and delta-tocotrienols are the major constituents. Recent advancements have shown their biological properties in conferring protection against cancer, cardiovascular diseases, neurodegeneration, oxidative stress and immune regulation. Preclinical results of these physiological functions were translated into clinical trials gaining global attention. This review will discuss in detail the evidence in human studies to date in terms of efficacy, population, disease state and bioavailability. The review will serve as a platform to pave the future direction for tocotrienols in clinical settings.
    Matched MeSH terms: Cognition/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links