Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Shiekh RA, Malik MA, Al-Thabaiti SA, Wani MY, Nabi A
    ScientificWorldJournal, 2014;2014:404617.
    PMID: 24772018 DOI: 10.1155/2014/404617
    2-Phenyl-N,N'-bis(pyridin-4-ylcarbonyl)butanediamide ligand with a series of transition metal complexes has been synthesized via two routes: microwave irradiation and conventional heating method. Microwave irritation method happened to be the efficient and versatile route for the synthesis of these metal complexes. These complexes were found to have the general composition M(L)Cl2/M(L)(CH3COO)2 (where M = Cu(II), Co(II), Ni(II), and L = ligand). Different physical and spectroscopic techniques were used to investigate the structural features of the synthesized compounds, which supported an octahedral geometry for these complexes. In vitro antifungal activity of the ligand and its metal complexes revealed that the metal complexes are highly active compared to the standard drug. Metal complexes showed enhanced activity compared to the ligand, which is an important step towards the designing of antifungal drug candidates.
    Matched MeSH terms: Coordination Complexes/chemistry*
  2. Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi K, Hashimoto M, et al.
    J Antibiot (Tokyo), 2017 Jan;70(1):45-51.
    PMID: 27599768 DOI: 10.1038/ja.2016.107
    The novel antifungal agent ASP2397 (Vical's compound ID VL-2397) is produced by the fungal strain MF-347833 that was isolated from Malaysian leaf litter and is identified here as an Acremonium species based on its morphology, physiological properties and 28S ribosomal DNA sequence. Because of its potential importance for producing novel antifungal agents, we determined the taxonomic and biologic properties of MF-347833. We show here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore. However, ASP2397 differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins. To understand the relationship between chemical structure and biological function, we isolated certain ASP2397 derivatives from the culture broth, and we further chemically converted the metal-free form to other derivatives.
    Matched MeSH terms: Coordination Complexes/chemistry
  3. Arifin K, Daud WR, Kassim MB
    PMID: 24508875 DOI: 10.1016/j.saa.2013.12.107
    Bis(dithiolene) tungsten carbonyl complex, W(S2C2Ph2)2(CO)2 was successfully synthesized and the structure, frontier molecular orbital and optical properties of the complex were investigated theoretically using density functional theory calculations. The investigation started with a molecular structure construction, followed by an optimization of the structural geometry using generalized-gradient approximation (GGA) in a double numeric plus polarization (DNP) basis set at three different functional calculation approaches. Vibrational frequency analysis was used to confirm the optimized geometry of two possible conformations of [W(S2C2Ph2)2(CO)2], which showed distorted octahedral geometry. Electronic structure and optical characterization were done on the ground states. Metal to ligand and ligand to metal charge transfer were dominant in this system.
    Matched MeSH terms: Coordination Complexes/chemistry*
  4. Gill MR, Harun SN, Halder S, Boghozian RA, Ramadan K, Ahmad H, et al.
    Sci Rep, 2016 08 25;6:31973.
    PMID: 27558808 DOI: 10.1038/srep31973
    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
    Matched MeSH terms: Coordination Complexes/chemistry*
  5. Ahmad N, Anouar EH, Tajuddin AM, Ramasamy K, Yamin BM, Bahron H
    PLoS One, 2020;15(4):e0231147.
    PMID: 32287324 DOI: 10.1371/journal.pone.0231147
    This paper reports the synthesis, characterization, anticancer screening and quantum chemical calculation of a tetradentate Schiff base 2,2'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl)bis- (azanylylidene))bis(methanylylidene))bis(4-fluorophenol) (L2F) and its Pd (II) complex (PdL2F). The compounds were characterized via UV-Visible, NMR, IR spectroscopy and single crystal x-ray diffraction. Density Functional Theory (DFT) and time-dependent DFT calculations in gas and solvent phases were carried out using B3LYP, B3P86, CAM-B3LYP and PBE0 hybrid functionals combined with LanL2DZ basis set. Complexation of L2F to form PdL2F was observed to cause a bathochromic shift of the maximum absorption bands of n-π* from 327 to 410 nm; an upfield shift for δ (HC = N) from 8.30 to 7.96 ppm and a decreased wavenumber for ν(C = N) from 1637 to 1616 cm-1. Overall, the UV-Vis, NMR and IR spectral data are relatively well reproduced through DFT and TD-DFT methods. L2F and PdL2F showed IC50 of 90.00 and 4.10 μg/mL, respectively, against human colorectal carcinoma (HCT116) cell lines, signifying increased anticancer activity upon complexation with Pd (II).
    Matched MeSH terms: Coordination Complexes/chemistry
  6. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Coordination Complexes/chemistry
  7. Liew HS, Mai CW, Zulkefeli M, Madheswaran T, Kiew LV, Delsuc N, et al.
    Molecules, 2020 Sep 12;25(18).
    PMID: 32932573 DOI: 10.3390/molecules25184176
    Photodynamic therapy (PDT) is emerging as a significant complementary or alternative approach for cancer treatment. PDT drugs act as photosensitisers, which upon using appropriate wavelength light and in the presence of molecular oxygen, can lead to cell death. Herein, we reviewed the general characteristics of the different generation of photosensitisers. We also outlined the emergence of rhenium (Re) and more specifically, Re(I) tricarbonyl complexes as a new generation of metal-based photosensitisers for photodynamic therapy that are of great interest in multidisciplinary research. The photophysical properties and structures of Re(I) complexes discussed in this review are summarised to determine basic features and similarities among the structures that are important for their phototoxic activity and future investigations. We further examined the in vitro and in vivo efficacies of the Re(I) complexes that have been synthesised for anticancer purposes. We also discussed Re(I) complexes in conjunction with the advancement of two-photon PDT, drug combination study, nanomedicine, and photothermal therapy to overcome the limitation of such complexes, which generally absorb short wavelengths.
    Matched MeSH terms: Coordination Complexes/chemistry
  8. Hossan MS, Break MKB, Bradshaw TD, Collins HM, Wiart C, Khoo TJ, et al.
    Molecules, 2021 Apr 09;26(8).
    PMID: 33918814 DOI: 10.3390/molecules26082166
    Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.
    Matched MeSH terms: Coordination Complexes/chemistry
  9. Gwaram NS, Ali HM, Khaledi H, Abdulla MA, Hadi AH, Lin TK, et al.
    Molecules, 2012 May 18;17(5):5952-71.
    PMID: 22609786 DOI: 10.3390/molecules17055952
    A series of Schiff bases derived from 2-acetylpyridne and their metal complexes were characterized by elemental analysis, NMR, FT-IR and UV-Vis spectral studies. The complexes were screened for anti-bacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumanni (AC), Klebsiella pneumonie (KB) and Pseudomonas aeruginosa (PA) using the disc diffusion and micro broth dilution assays. Based on the overall results, the complexes showed the highest activities against MRSA while a weak antibacterial activity was observed against A. baumanii and P. aeruginosa.
    Matched MeSH terms: Coordination Complexes/chemistry*
  10. Ahmadzadeh S, Kassim A, Rezayi M, Rounaghi GH
    Molecules, 2011 Sep 22;16(9):8130-42.
    PMID: 21941227 DOI: 10.3390/molecules16098130
    The complexation reactions between the macrocyclic ionophore, p-isopropylcalix[6]arene and Cs+ cation were studied in dimethylsulfoxide-acetonitrile (DMSO-AN) binary non-aqueous solvents at different temperatures using a conductometry method. The conductance data show that the stoichiometry of the (p-isopropylcalix[6]-arene·Cs)+ complex in all binary mixed solvents is 1:1. The stability of the complexes is affected by the composition of the binary solvent media and a non-linear behavior was observed for changes of log K(f) of the complex versus the composition of the binary mixed solvents. The thermodynamic parameters (DH°(c) and DS°(c)) for formation of (p-isopropyl-calix[6]arene·Cs)+ complex were obtained from temperature dependence of the stability constant and the obtained results show that the (p-isopropylcalix[6]arene·Cs)+ complex is enthalpy destabilized, but entropy stabilized, and the values of the mentioned parameters are affected strongly by the nature and composition of the binary mixed solvents.
    Matched MeSH terms: Coordination Complexes/chemistry*
  11. Ng CH, Kong SM, Tiong YL, Maah MJ, Sukram N, Ahmad M, et al.
    Metallomics, 2014 Apr;6(4):892-906.
    PMID: 24549332 DOI: 10.1039/c3mt00276d
    Copper compounds can be alternatives to platinum-based anticancer drugs. This study investigated the effects of a series of ternary copper(II) complexes, [Cu(phen)(aa)(H2O)]NO3·xH2O 1-4 (phen = 1,10-phenanthroline; aa = gly (1), DL-ala (2), sar (3), C-dmg (4)), on metastatic and cisplatin-resistant MDA-MB-231 breast cancer cells and MCF10A non-cancerous breast cells, and some aspects of the mechanisms. These complexes were distinctively more antiproliferative towards and induced greater apoptotic cell death in MDA-MB-231 than in MCF10A cells. 2 and 4 could induce cell cycle arrest only in cancer cells. Further evidence from DCFH-DA assay showed higher induction of reactive oxygen species (ROS) in treated cancer cells but minimal ROS increase in normal cells. DNA double-strand breaks, via a γ-H2AX assay, were only detected in cancer cells treated with 5 μM of the complexes. These complexes poorly inhibited chymotrypsin-like activity in the 20S rabbit proteasome while they did not inhibit the three proteolytic sites of MDA-MB-231 cells at 10 μM. However, the complexes could inhibit degradation of ubiquinated proteins of MDA-MB-231 cells. In addition, compound 4 was found to be effective against cervical (Hela), ovarian (SKOV3), lung (A549, PC9), NPC (Hone1, HK1, C666-1), breast (MCF7, T47D), lymphoma and leukemia (Nalmawa, HL60) and colorectal (SW480, SW48, HCT118) cancer cell lines with IC50 values (24 h) in the 1.7-19.0 μM range. Single dose NCI60 screening of 4 showed the complex to be highly cytotoxic to most cancer cell types and more effective than cisplatin.
    Matched MeSH terms: Coordination Complexes/chemistry
  12. Kosiha A, Lo KM, Parthiban C, Elango KP
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:778-787.
    PMID: 30423764 DOI: 10.1016/j.msec.2018.10.021
    Three metal(II) complexes [CoLCl2], [CuLCl2] and [ZnL2Cl2] {L = 2‑chloro‑3‑((3‑dimethylamino)propylamino)naphthalene‑1,4‑dione} have been synthesized and characterized using analytical, thermal and spectral techniques (FT-IR, UV-Vis, ESR and ESI-MS). The structure of the L has been confirmed by single crystal XRD study. The complexes show good binding propensity to bovine serum albumin (BSA) having relatively higher binding constant values (104 M-1) than the ligand. Fluorescence spectral studies indicate that [CoLCl2] binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (2.22 × 105 M-1). Agarose gel electrophoresis run on plasmid DNA (pUC18) prove that all the complexes showed efficient DNA cleavage via hydroxyl radical mechanism. The complexes were identified as potent anticancer agents against two human cancer cell lines (MCF7 and A549) by comparing with cisplatin. Co(II) complex demonstrated greater cytotoxicity against MCF7 and A549 cells with IC50 values at 19 and 22 μM, respectively.
    Matched MeSH terms: Coordination Complexes/chemistry*
  13. Nanjundan N, Selvakumar P, Narayanasamy R, Haque RA, Velmurugan K, Nandhakumar R, et al.
    J. Photochem. Photobiol. B, Biol., 2014 Dec;141:176-85.
    PMID: 25463665 DOI: 10.1016/j.jphotobiol.2014.10.009
    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations.
    Matched MeSH terms: Coordination Complexes/chemistry
  14. Alipour E, Alimohammady F, Yumashev A, Maseleno A
    J Mol Model, 2019 Dec 13;26(1):7.
    PMID: 31834504 DOI: 10.1007/s00894-019-4267-1
    Today, drug delivery systems based on nanostructures have become the most efficient to be studied. Recent studies revealed that the fullerenes can be used as drug carriers and transport drugs in a target cell. The aim of the present work is to study the interaction of C60 fullerene containing porphyrin-like transition metal-N4 clusters (TMN4C55, TM = Fe, Co, and Ni) with a non-steroidal anti-inflammatory drug (ibuprofen (Ibp)) by employing the method of the density functional theory. Results showed that the C60 fullerene with TMN4 clusters could significantly enhance the tendency of C60 for adsorption of ibuprofen drug. Also, our ultraviolet-visible results show that the electronic spectra of Ibp/TMN4C55 complexes exhibit a blue shift toward lower wavelengths (higher energies). It was found that the NiN4C55 fullerene had high chemical reactivity, which was important for binding of the drug onto the carrier surface. In order to gain insight into the binding features of Ibp/TMN4C55 complexes, the atoms in molecules analysis was also performed. Our results exhibit the electrostatic features of the Ibp/TMN4C55 bonding. Consequently, this study demonstrated that the TMN4C55 fullerenes could be used as potential carriers for delivery of Ibp drug in the nanomedicine domain. Graphical Abstract The TMN4C55 (TM=Fe, Co, and Ni) fullerenes could be used as potential carriers for delivery of ibuprofen drug in the nanomedicine domain.
    Matched MeSH terms: Coordination Complexes/chemistry
  15. Ng CH, Chan CW, Lai JW, Ooi IH, Chong KV, Maah MJ, et al.
    J Inorg Biochem, 2016 07;160:1-11.
    PMID: 27105312 DOI: 10.1016/j.jinorgbio.2016.04.003
    Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.
    Matched MeSH terms: Coordination Complexes/chemistry*
  16. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Coordination Complexes/chemistry*
  17. Mohd Sukri SA, Heng LY, Abd Karim NH
    J Fluoresc, 2017 May;27(3):1009-1023.
    PMID: 28224358 DOI: 10.1007/s10895-017-2035-0
    The platinum(II) salphen complex N,N'-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum(II); (1) and its two derivatives containing hydroxyl functionalized side chains N,N'-bis-[4-[[1-(2-hydroxyethoxy)] salicylidene] phenylenediamine-platinum(II); (2) and N,N'-bis-[4-[[1-(3-hydroxypropoxy)] salicylidene] phenylenediamine-platinum(II); (3) were synthesized and characterized. The structures of the complexes were confirmed by 1H and 13C NMR spectroscopy, FTIR, ESI-MS and CHN elemental analyses. The effects of the hydroxyl substituent on the spectral properties and the DNA binding behaviors of the Pt(II) complexes were explored. The binding mode and interactions of these complexes with duplex DNA (calf thymus DNA and porcine DNA) and also single-stranded DNA were studied by UV-Vis and emission DNA titration. The complexes interact with DNA by intercalation binding mode with the binding constants in the order of magnitude (Kb = 104 M-1, CT-DNA) and (Kb = 105 M-1, porcine DNA). The intercalation of the complex in the DNA structure was proposed to happen by π-π stacking due to its square-planar geometry and aromatic rings structure. The phosphorescence emission spectral characteristics of Pt(II) complexes when interacted with DNA have been studied. Also, the application of the chosen hydroxypropoxy side chains complex (3) as an optical DNA biosensor, specifically for porcine DNA was investigated. These findings will be valuable for the potential use of the platinum(II) salphen complex as an optical DNA biosensor for the detection of porcine DNA in food products.
    Matched MeSH terms: Coordination Complexes/chemistry*
  18. Chin LF, Kong SM, Seng HL, Tiong YL, Neo KE, Maah MJ, et al.
    J Biol Inorg Chem, 2012 Oct;17(7):1093-105.
    PMID: 22825726 DOI: 10.1007/s00775-012-0923-y
    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.
    Matched MeSH terms: Coordination Complexes/chemistry
  19. Hassan LR, Anouar EH, Bahron H, Abdullah F, Mohd Tajuddin A
    J Biol Inorg Chem, 2020 03;25(2):239-252.
    PMID: 31974764 DOI: 10.1007/s00775-020-01755-6
    Hydroxamic acids [R(CO)N(OH)R'] are flexible compounds for organic and inorganic analyses due to their frailer structures compared to the carboxylic acid. The syntheses and characterization of benzohydroxamic acid (BHA), its CH3-, OCH3-, Cl- para-substituted derivatives and their Cr(III) complexes are reported herein. The metal complexes were synthesized by reacting the hydroxamic acids with chromium(III) chloride hexahydrate in 2:1 molar ratio. The compounds were characterized via melting point, elemental analysis, FTIR, 1H and 13C NMR, TGA, mass spectrometry, molar conductance and UV-Visible. Data analysis suggests that each complex has the Cr(III) center coordinated to the carbonyl and hydroxy oxygen atoms of the hydroxamic acids in bidentate O,O manner and two water molecules to form octahedral geometry. Non-electrolytic behavior of the complexes was shown through their low molar conductivity. Cytotoxicity study against HCT116 and alpha-glucosidase inhibition test revealed that all complexes have higher activity than their parent ligands. Molecular docking study shows that the docking of active complexes is thermodynamically favorable and the inhibition efficiency may depend on the types and the numbers of molecular interactions established in the corresponding stable conformers.
    Matched MeSH terms: Coordination Complexes/chemistry
  20. Jamil F, Teh AH, Schadich E, Saito JA, Najimudin N, Alam M
    J. Biochem., 2014 Aug;156(2):97-106.
    PMID: 24733432 DOI: 10.1093/jb/mvu023
    A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.
    Matched MeSH terms: Coordination Complexes/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links