Displaying publications 1 - 20 of 123 in total

Abstract:
Sort:
  1. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: DNA, Ribosomal/genetics
  2. Abbas SZ, Rafatullah M, Ismail N, Lalung J
    J Basic Microbiol, 2014 Dec;54(12):1279-87.
    PMID: 24852724 DOI: 10.1002/jobm.201400157
    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater.
    Matched MeSH terms: DNA, Ribosomal/genetics
  3. Abbasiliasi S, Tan JS, Ibrahim TA, Ramanan RN, Vakhshiteh F, Mustafa S, et al.
    BMC Microbiol, 2012;12:260.
    PMID: 23153191 DOI: 10.1186/1471-2180-12-260
    Lactic acid bacteria (LAB) can be isolated from traditional milk products. LAB that secrete substances that inhibit pathogenic bacteria and are resistant to acid, bile, and pepsin but not vancomycin may have potential in food applications.
    Matched MeSH terms: DNA, Ribosomal/genetics
  4. Abdulsalam AM, Ithoi I, Al-Mekhlafi HM, Al-Mekhlafi AM, Ahmed A, Surin J
    PLoS One, 2013;8(12):e84372.
    PMID: 24376805 DOI: 10.1371/journal.pone.0084372
    BACKGROUND: Blastocystis is a genetically diverse and a common intestinal parasite of humans with a controversial pathogenic potential. This study was carried out to identify the Blastocystis subtypes and their association with demographic and socioeconomic factors among outpatients living in Sebha city, Libya.

    METHODS/FINDINGS: Blastocystis in stool samples were cultured followed by isolation, PCR amplification of a partial SSU rDNA gene, cloning, and sequencing. The DNA sequences of isolated clones showed 98.3% to 100% identity with the reference Blastocystis isolates from the Genbank. Multiple sequence alignment showed polymorphism from one to seven base substitution and/or insertion/deletion in several groups of non-identical nucleotides clones. Phylogenetic analysis revealed three assemblage subtypes (ST) with ST1 as the most prevalent (51.1%) followed by ST2 (24.4%), ST3 (17.8%) and mixed infections of two concurrent subtypes (6.7%).

    BLASTOCYSTIS: ST1 infection was significantly associated with female (P = 0.009) and low educational level (P = 0.034). ST2 was also significantly associated with low educational level (P= 0.008) and ST3 with diarrhoea (P = 0.008).

    CONCLUSION: Phylogenetic analysis of Libyan Blastocystis isolates identified three different subtypes; with ST1 being the predominant subtype and its infection was significantly associated with female gender and low educational level. More extensive studies are needed in order to relate each Blastocystis subtype with clinical symptoms and potential transmission sources in this community.

    Matched MeSH terms: DNA, Ribosomal/genetics
  5. Abe N, Matsubara K, Tamukai K, Miwa Y, Takami K
    Parasitol Res, 2015 Aug;114(8):3175-9.
    PMID: 26044884 DOI: 10.1007/s00436-015-4564-2
    Sarcocystis nesbitti, using snakes as the definitive host, is a causative agent of acute human muscular sarcocystosis in Malaysia. Therefore, it is important to explore the distribution and prevalence of S. nesbitti in snakes. Nevertheless, epizootiological information of S. nesbitti in snakes remains insufficient because few surveys have assessed Sarcocystis infection in snakes in endemic countries. In Japan, snakes are popular exotic pet animals that are imported from overseas, but the degree of Sarcocystis infection in them remains unclear. The possibility exists that muscular sarcocystosis by S. nesbitti occurs in contact with captive snakes in non-endemic countries. For a total of 125 snake faecal samples from 67 snake species collected at animal hospitals, pet shops and a zoo, this study investigated the presence of Sarcocystis using polymerase chain reaction (PCR) for the 18S ribosomal RNA gene (18S rDNA). Four (3.2%) faecal samples were positive by PCR. Phylogenetic analysis of the 18S rDNA sequences obtained from four amplification products revealed one isolate from a beauty snake (Elaphe taeniura), Sarcocystis zuoi, which uses rat snakes as the definitive host. The isolate from a Macklot's python (Liasis mackloti) was closely related with unidentified Sarcocystis sp. from reticulated pythons in Malaysia. The remaining two isolates from tree boas (Corallus spp.) were closely related with Sarcocystis lacertae, Sarcocystis gallotiae and unidentified Sarcocystis sp. from smooth snakes, Tenerife lizards and European shrews, respectively. This report is the first of a study examining the distribution of Sarcocystis species in captive snakes in Japan.
    Matched MeSH terms: DNA, Ribosomal/genetics
  6. Akter R, Vythilingam I, Khaw LT, Qvist R, Lim YA, Sitam FT, et al.
    Malar J, 2015 Oct 05;14:386.
    PMID: 26437652 DOI: 10.1186/s12936-015-0856-3
    BACKGROUND: Malaria is a vector-borne parasitic disease which is prevalent in many developing countries. Recently, it has been found that Plasmodium knowlesi, a simian malaria parasite can be life-threatening to humans. Long-tailed macaques, which are widely distributed in Malaysia, are the natural hosts for simian malaria, including P. knowlesi. The aim of the present study was to determine the prevalence of simian malaria parasites in long-tailed macaques in the district of Hulu Selangor, Selangor, Malaysia.

    METHODS: A total of 70 blood samples were collected from Macaca fascicularis dwelling in the forest of Hulu Selangor by the Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia. DNA was extracted using PureLink™ Genomic DNA Kits. Conventional and nested PCR were used to detect the genus and species of Plasmodium parasites respectively. In addition, phylogenetic analysis was carried out to confirm the species of Plasmodium parasites.

    RESULTS: Thirty-five (50 %) of the 70 samples were positive for Plasmodium using genus-specific primers. These positive samples were then subjected to nested PCR targeting the 18S ribosomal RNA genes to detect all five simian malaria parasites: namely, P. knowlesi, Plasmodium inui, Plasmodium cynomolgi, Plasmodium fieldi, and Plasmodium coatneyi. All five species of simian malaria parasites were detected. Of these, P. inui was the predominant (65.7 %), followed by P. knowlesi (60 %), P. cynomolgi (51.4 %) P. coatneyi (45.7 %) and P. fieldi (2.9 %). A total of nine macaques had mono-infection with P. knowlesi (four), P. cynomolgi (two), P. coatneyi (two) and P. fieldi (one). Eleven of the macaques had dual infections while 12 had triple infections. Three macaques were infected with four species of Plasmodium. Molecular and phylogenetic analysis confirmed the five species of Plasmodium parasites.

    CONCLUSION: This study has provided evidence to elucidate the presence of transmission of malaria parasites among the local macaques in Hulu Selangor. Since malaria is a zoonosis, it is important to determine the new control strategies for the control of malaria.

    Matched MeSH terms: DNA, Ribosomal/genetics
  7. Alkotaini B, Anuar N, Kadhum AA, Sani AA
    World J Microbiol Biotechnol, 2014 Apr;30(4):1377-85.
    PMID: 24272828 DOI: 10.1007/s11274-013-1558-z
    A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F-C-K-S-L-P-L-P-L-S-V-K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).
    Matched MeSH terms: DNA, Ribosomal/genetics
  8. Ang SK, Yahya A, Abd Aziz S, Md Salleh M
    Prep Biochem Biotechnol, 2015;45(3):279-305.
    PMID: 24960316 DOI: 10.1080/10826068.2014.923443
    This study presents the isolation and screening of fungi with excellent ability to degrade untreated oil palm trunk (OPT) in a solid-state fermentation system (SSF). Qualitative assay of cellulases and xylanase indicates notable secretion of both enzymes by 12 fungal strains from a laboratory collection and 5 strains isolated from a contaminated wooden board. High production of these enzymes was subsequently quantified in OPT in SSF. Aspergillus fumigates SK1 isolated from cow dung gives the highest xylanolytic activity (648.448 U g(-1)), generally high cellulolytic activities (CMCase: 48.006, FPase: 6.860, beta-glucosidase: 16.328 U g(-1)) and moderate lignin peroxidase activity (4.820 U/g), and highest xylanolytic activity. The xylanase encoding gene of Aspergillus fumigates SK1 was screened using polymerase chain reaction by a pair of degenerate primers. Through multiple alignment of the SK1 strain's xylanase nucleotide sequences with other published xylanases, it was confirmed that the gene belonged to the xylanase glycoside hydrolase family 11 (GH11) with a protein size of 24.49 kD. Saccharification of lemongrass leaves using crude cellulases and xylanase gives the maximum reducing sugars production of 6.84 g/L with glucose as the major end product and traces of phenylpropanic compounds (vanillic acid, p-coumaric acid, and ferulic acid).
    Matched MeSH terms: DNA, Ribosomal/genetics
  9. Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V, et al.
    Mol Biol Rep, 2021 Apr;48(4):3285-3301.
    PMID: 33880673 DOI: 10.1007/s11033-021-06321-0
    Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.
    Matched MeSH terms: DNA, Ribosomal/genetics
  10. Asma I, Sim BL, Brent RD, Johari S, Yvonne Lim AL
    Trop Biomed, 2015 Jun;32(2):310-22.
    PMID: 26691260 MyJurnal
    Cryptosporidiosis is a particular concern in immunocompromised individuals where symptoms may be severe. The aim of this study was to examine the epidemiological and molecular characteristics of Cryptosporidium infections in HIV/AIDS patients in Malaysia in order to identify risk factors and facilitate control measures. A modified Ziehl-Neelsen acid fast staining method was used to test for the presence of Cryptosporidium oocysts in the stools of 346 HIV/AIDS patients in Malaysia. Standard coproscopical methods were used to identify infections with other protozoan or helminths parasites. To identify the species of Cryptosporidium, DNA was extracted and nested-PCR was used to amplify a portion of the SSU rRNA gene. A total of 43 (12.4%) HIV-infected patients were found to be infected with Cryptosporidium spp. Of the 43 Cryptosporidium-positive HIV patients, 10 (23.3%) also harboured other protozoa, and 15 (34.9%) had both protozoa and helminths. The highest rates of cryptosporidiosis were found in adult males of Malay background, intravenous drug users, and those with low CD4 T cell counts (i.e., < 200 cells/mm3). Most were asymptomatic and had concurrent opportunistic infections mainly with Mycobacterium tuberculosis. DNA sequence analysis of 32 Cryptosporidium isolates identified C. parvum (84.3%), C. hominis (6.3%), C. meleagridis (6.3%), and C. felis (3.1%). The results of the present study revealed a high prevalence of Cryptosporidium infection in hospitalized HIV/AIDS patients. The results also confirmed the potential significance of zoonotic transmission of C. parvum in HIV infected patients, as it was the predominant species found in this study. However, these patients were found to be susceptible to a wide range of Cryptosporidium species. Epidemiological and molecular characterization of Cryptosporidium isolates provides clinicians and researchers with further information regarding the origin of the infection, and may enhance treatment and control strategies.
    Matched MeSH terms: DNA, Ribosomal/genetics
  11. Baba ZA, Hamid B, Sheikh TA, Alotaibi SH, El Enshasy HA, Ansari MJ, et al.
    Molecules, 2021 Sep 23;26(19).
    PMID: 34641302 DOI: 10.3390/molecules26195758
    Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.
    Matched MeSH terms: DNA, Ribosomal/genetics
  12. Baharum SN, Nurdalila AA
    Mol Biol Rep, 2012 May;39(5):5225-32.
    PMID: 22167328 DOI: 10.1007/s11033-011-1320-2
    The most economically important form of aquaculture is fish farming, which is an industry that accounts for an ever increasing share of world fishery production. Molecular markers can be used to enhance the productivity of the aquaculture and fish industries to meet the increasing demand. Molecular markers can be identified via a DNA test regardless of the developmental stage, age or environmental challenges experienced by the organism. The application of 16s and cytochrome b markers has enabled rapid progress in investigations of genetic variability and inbreeding, parentage assignments, species and strain identification and the construction of high resolution genetic linkage maps for aquaculture fisheries. In this review, the advantages of principles and potential power tools of 16s and cytochrome b markers are discussed. Main findings in term of trend, aspects and debates on the reviewed issue made from the model of aquatic species for the benefit of aquaculture genomics and aquaculture genetics research are discussed. The concepts in this review are illustrated with various research examples and results that relate theory to reality and provide a strong review of the current status of these biotechnology topics.
    Matched MeSH terms: DNA, Ribosomal/genetics*
  13. Bay HH, Lim CK, Kee TC, Ware I, Chan GF, Shahir S, et al.
    Environ Sci Pollut Res Int, 2014 Mar;21(5):3891-906.
    PMID: 24293297 DOI: 10.1007/s11356-013-2331-4
    This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.
    Matched MeSH terms: DNA, Ribosomal/genetics
  14. Biglari S, Alfizah H, Ramliza R, Rahman MM
    J Med Microbiol, 2015 Jan;64(Pt 1):53-8.
    PMID: 25381148 DOI: 10.1099/jmm.0.082263-0
    Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
    Matched MeSH terms: DNA, Ribosomal/genetics
  15. Björkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, et al.
    Int J Syst Evol Microbiol, 2002 Jan;52(Pt 1):141-148.
    PMID: 11837296 DOI: 10.1099/00207713-52-1-141
    A taxonomic study was conducted to clarify the relationships of two bacterial populations belonging to the genus Weissella. A total of 39 strains originating mainly from Malaysian foods (22 strains) and clinical samples from humans (9 strains) and animals (6 strains) were analysed using a polyphasic taxonomic approach. The methods included classical phenotyping, whole-cell protein electrophoresis, 16S and 23S rDNA RFLP (ribotyping), determination of 16S rDNA sequence homologies and DNA-DNA reassociation levels. Based on the results, the strains were considered to represent two different species, Weissella confusa and a novel Weissella species, for which the name Weissella cibaria sp. nov. is proposed. Weisella confusa possessed the highest 16S rDNA sequence similarity to Weisella cibaria, but the DNA-DNA reassociation experiment showed hybridization levels below 49% between the strains studied. The numerical analyses of Weisella confusa and Weisella cibaria strains did not reveal any specific clustering with respect to the origin of the strains. Based on whole-cell protein electrophoresis, and ClaI and HindIII ribotyping patterns, food and clinical isolates were randomly located in the two species-specific clusters obtained.
    Matched MeSH terms: DNA, Ribosomal/genetics
  16. Blair D, Agatsuma T, Watanobe T, Okamoto M, Ito A
    Parasitology, 1997 Oct;115 ( Pt 4):411-7.
    PMID: 9364568
    Nucleotide sequences were obtained for the second internal transcribed spacer of the ribosomal gene repeat and for part of the mitochondrial-cytochrome c oxidase subunit I gene from geographical isolates of Paragonimus westermani from Japan, China, Korea, Taiwan, the Philippines, peninsular Malaysia and Thailand. Sequences were obtained from several other species of Paragonimus for comparative purposes. Two groups were recognized within P. westermani: an NE group (China, Japan, Korea, Taiwan) which was relatively uniform and included both diploid and triploid forms, and a southern group (Malaysia, Thailand, Philippines), members of which were genetically distant from one another. According to both ITS2 and COI data, genetic distances among P. westermani isolates equalled or exceeded those between some distinct species of Paragonimus. The ITS2 sequences were conserved relative to COI sequences. Substitutions among the latter may be approaching saturation within the genus Paragonimus.
    Matched MeSH terms: DNA, Ribosomal/genetics
  17. Borkhanuddin MH, Cech G, Molnár K, Shaharom-Harrison F, Khoa TND, Samshuri MA, et al.
    Parasitol Res, 2020 Jan;119(1):85-96.
    PMID: 31768684 DOI: 10.1007/s00436-019-06541-1
    Examination of 35 barramundi (Lates calcarifer) from aquaculture cages in Setiu Wetland, Malaysia, revealed a single fish infected with three Henneguya spp. (Cnidaria: Myxosporea). Characterization of the infections using tissue tropism, myxospore morphology and morphometry and 18S rDNA sequencing supported description of three new species: Henneguya setiuensis n. sp., Henneguya voronini n. sp. and H. calcarifer n. sp. Myxospores of all three species had typical Henneguya morphology, with two polar capsules in the plane of the suture, an oval spore body, smooth valve cell surfaces, and two caudal appendages. Spores were morphometrically similar, and many dimensions overlapped, but H. voronini n. sp. had shorter caudal appendages compared with H. calcarifer n. sp. and H. setiuensis n. sp. Gross tissue tropism distinguished the muscle parasite H. calcarifer n. sp. from gill parasites H. setiuensis n. sp. and H. voronini n. sp.; and these latter two species were further separable by fine-scale location of developing plasmodia, which were intra-lamellar for H. setiuensis n. sp. and basal to the filaments for H. voronini n. sp. small subunit ribosomal DNA sequences distinguished all three species: the two gill species H. setiuensis n. sp. and H voronini n. sp. were only 88% similar (over 1708 bp), whereas the muscle species H. calcarifer n. sp. was most similar to H. voronini n. sp. (98% over 1696 bp). None of the three novel species was more than 90% similar to any known myxosporean sequence in GenBank. Low infection prevalence of these myxosporeans and lack of obvious tissue pathology from developing plasmodia suggested none of these parasites are currently a problem for barramundi culture in Setiu Wetland; however additional surveys of fish, particularly at different times of the year, would be informative for better risk assessment.
    Matched MeSH terms: DNA, Ribosomal/genetics
  18. Borman AM, Szekely A, Johnson EM
    Med Mycol, 2017 Jul 01;55(5):563-567.
    PMID: 28204557 DOI: 10.1093/mmy/myw147
    Candida auris has recently emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide and the existence of geographic region-specific discrete clonal lineages. Here we have compared the rDNA sequences of 24 isolates of Candida auris from 14 different hospital centers in the United Kingdom with those of strains from different international origins present in the public sequence databases. Here we show that UK isolates of C. auris fall into three well-supported clades corresponding to lineages that have previously been reported from India, Malaysia and Kuwait, Japan and Korea, and South Africa, respectively.
    Matched MeSH terms: DNA, Ribosomal/genetics
  19. Busarakam K, Brown R, Bull AT, Tan GY, Zucchi TD, da Silva LJ, et al.
    Antonie Van Leeuwenhoek, 2016 Feb;109(2):319-34.
    PMID: 26809280 DOI: 10.1007/s10482-015-0635-8
    The taxonomic position of 26 filamentous actinobacteria isolated from a hyper-arid Atacama Desert soil and 2 from an arid Australian composite soil was established using a polyphasic approach. All of the isolates gave the diagnostic amplification product using 16S rRNA oligonucleotide primers specific for the genus Amycolatopsis. Representative isolates had chemotaxonomic and morphological properties typical of members of the genus Amycolatopsis. 16S rRNA gene analyses showed that all of the isolates belong to the Amycolatopsis methanolica 16S rRNA gene clade. The Atacama Desert isolates were assigned to one or other of two recognised species, namely Amycolatopsis ruanii and Amycolatopsis thermalba, based on 16S rRNA gene sequence, DNA:DNA relatedness and phenotypic data; emended descriptions are given for these species. In contrast, the two strains from the arid Australian composite soil, isolates GY024(T) and GY142, formed a distinct branch at the periphery of the A. methanolica 16S rRNA phyletic line, a taxon that was supported by all of the tree-making algorithms and by a 100 % bootstrap value. These strains shared a high degree of DNA:DNA relatedness and have many phenotypic properties in common, some of which distinguished them from all of the constituent species classified in the A. methanolica 16S rRNA clade. Isolates GY024(T) and GY142 merit recognition as a new species within the A. methanolica group of thermophilic strains. The name proposed for the new species is Amycolatopsis deserti sp. nov.; the type strain is GY024(T) (=NCIMB 14972(T) = NRRL B-65266(T)).
    Matched MeSH terms: DNA, Ribosomal/genetics
  20. Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B
    Animal, 2016 Oct;10(10):1666-76.
    PMID: 27052363 DOI: 10.1017/S1751731116000525
    The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
    Matched MeSH terms: DNA, Ribosomal/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links