Displaying publications 1 - 20 of 83 in total

Abstract:
Sort:
  1. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Dengue Virus/genetics
  2. Appanna R, Ponnampalavanar S, Lum Chai See L, Sekaran SD
    PLoS One, 2010;5(9).
    PMID: 20927388 DOI: 10.1371/journal.pone.0013029
    The human leukocyte antigen alleles have been implicated as probable genetic markers in predicting the susceptibility and/or protection to severe manifestations of dengue virus (DENV) infection. In this present study, we aimed to investigate for the first time, the genotype variants of HLA Class 1(-A and -B) of DENV infected patients against healthy individuals in Malaysia.
    Matched MeSH terms: Dengue Virus/genetics
  3. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Dengue Virus/genetics
  4. Ngwe Tun MM, Muthugala R, Nabeshima T, Rajamanthri L, Jayawardana D, Attanayake S, et al.
    J Clin Virol, 2020 04;125:104304.
    PMID: 32145478 DOI: 10.1016/j.jcv.2020.104304
    BACKGROUND: Sri Lanka experienced its largest dengue outbreak in 2017 with more than 185,000 dengue cases including at least 250 fatalities.

    OBJECTIVES: Our study aimed to characterize the clinical, immunological and virological features of confirmed dengue patients in Sri Lanka during the outbreak in 2017 when unusual manifestations of severe dengue were observed.

    STUDY DESIGN: Sera from 295 patients who were admitted to Teaching Hospital Kandy, Kandy, Sri Lanka between March 2017- January 2018 were subjected to NS1 antigen, IgM and IgG ELISAs, virus isolation, conventional and real time RT-PCR and next generation sequencing.

    RESULTS: Primary and secondary infections were detected in 48.5 % and 51.5 % of the study population, respectively. Two hundred twenty five DENV strains were isolated (219 DENV-2, one DENV-3, two DENV-4, two mixed infections of DENV-2 and -3 and one mixed infection of DENV-2 and -4). Unusual and severe manifestations such as encephalitis, encephalopathy, liver failure, kidney failure, myocarditis, Guillain-Barré syndrome and multi-organ failure were noted in 44 dengue patients with 11 deaths. The viraemia levels in patients with primary infection and unusual manifestations were significantly higher compared to those in patients with secondary infection. A new clade of DENV-2 Cosmopolitan genotype strains was observed with the strains closely related to those from China, Malaysia, Indonesia, Singapore and Taiwan.

    CONCLUSIONS: The new clade of DENV-2 cosmopolitan genotype observed in Sri Lanka in 2017 caused an unprecedented, severe dengue outbreak. The emergence of DENV-3 and DENV-4 in the 2017 outbreak might cause future outbreaks in Sri Lanka.

    Matched MeSH terms: Dengue Virus/genetics*
  5. Dhanoa A, Hassan SS, Ngim CF, Lau CF, Chan TS, Adnan NA, et al.
    BMC Infect Dis, 2016 08 11;16(1):406.
    PMID: 27514512 DOI: 10.1186/s12879-016-1731-8
    BACKGROUND: The co-circulation of 4 DENV serotypes in geographically expanding area, has resulted in increasing occurrence of DENV co-infections. However, studies assessing the clinical impact of DENV co-infections have been scarce and have involved small number of patients. This study explores the impact of DENV co-infection on clinical manifestations and laboratory parameters.

    METHODS: This retrospective study involved consecutive hospitalized patients with non-structural protein 1 (NS1) antigen positivity during an outbreak (Jan to April 2014). Multiplex RT-PCR was performed directly on NS1 positive serum samples to detect and determine the DENV serotypes. All PCR-positive serum samples were inoculated onto C6/36 cells. Multiplex PCR was repeated on the supernatant of the first blind passage of the serum-infected cells. Random samples of supernatant from the first passage of C6/36 infected cells were subjected to whole genome sequencing. Clinical and laboratory variables were compared between patients with and without DENV co-infections.

    RESULTS: Of the 290 NS1 positive serum samples, 280 were PCR positive for DENV. Medical notes of 262 patients were available for analysis. All 4 DENV serotypes were identified. Of the 262 patients, forty patients (15.3 %) had DENV co-infections: DENV-1/DENV-2(85 %), DENV-1/DENV-3 (12.5 %) and DENV-2/DENV-3 (2.5 %). Another 222 patients (84.7 %) were infected with single DENV serotype (mono-infection), with DENV- 1 (76.6 %) and DENV- 2 (19.8 %) predominating. Secondary dengue infections occurred in 31.3 % patients. Whole genome sequences of random samples representing DENV-1 and DENV-2 showed heterogeneity amongst the DENVs. Multivariate analysis revealed that pleural effusion and the presence of warning signs were significantly higher in the co-infected group, both in the overall and subgroup analysis. Diarrhoea was negatively associated with co-infection. Additionally, DENV-2 co-infected patients had higher frequency of patients with severe thrombocytopenia (platelet count < 50,000/mm(3)), whereas DENV-2 mono-infections presented more commonly with myalgia. Elevated creatinine levels were more frequent amongst the co-infected patients in univariate analysis. Haemoconcentration and haemorrhagic manifestations were not higher amongst the co-infected patients. Serotypes associated with severe dengue were: DENV-1 (n = 9), DENV-2 (n = 1), DENV-3 (n = 1) in mono-infected patients and DENV-1/DENV-2 (n = 5) and DENV-1/DENV-3 (n = 1) amongst the co-infected patients.

    CONCLUSION: DENV co-infections are not uncommon in a hyperendemic region and co-infected patients are skewed towards more severe clinical manifestations compared to mono-infected patients.

    Matched MeSH terms: Dengue Virus/genetics*
  6. Dzaki N, Azzam G
    PLoS One, 2018;13(3):e0194664.
    PMID: 29554153 DOI: 10.1371/journal.pone.0194664
    Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.
    Matched MeSH terms: Dengue Virus/genetics
  7. Zandi K, Bassit L, Amblard F, Cox BD, Hassandarvish P, Moghaddam E, et al.
    PMID: 31061163 DOI: 10.1128/AAC.00397-19
    Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.
    Matched MeSH terms: Dengue Virus/genetics
  8. Tham HW, Balasubramaniam VR, Tejo BA, Ahmad H, Hassan SS
    Viruses, 2014 Dec;6(12):5028-46.
    PMID: 25521592 DOI: 10.3390/v6125028
    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.
    Matched MeSH terms: Dengue Virus/genetics
  9. Rashid JI, Yusof NA, Abdullah J, Hashim U, Hajian R
    PMID: 25491829 DOI: 10.1016/j.msec.2014.09.010
    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel.
    Matched MeSH terms: Dengue Virus/genetics
  10. Kassim FM, Izati MN, TgRogayah TA, Apandi YM, Saat Z
    PMID: 21706934
    Accurate and timely diagnosis of dengue virus is important for early detection of dengue virus infection. In this study, the usefulness of the dengue NS1 antigen test was evaluated as a routine, rapid diagnostic test for dengue virus infection. A total of 208 sera from patients suspected of having dengue virus infection were collected and tested for dengue antibody, dengue genome and dengue NS1 antigen. Dengue antibody test, dengue PCR test and dengue antigen test were able to detect dengue virus infection from Days 1 to 8 in 72.8, 52.8 and 44.0% of samples, respectively. Of the 208 sera tested, 69.2% (144/208) of the acute sera were positive for dengue virus infection based on IgM antibody, IgG antibody, NS1 antigen and PCR tests. Thirty-two point two percent of the samples (67/208) were found positive for dengue NS1 antigen, 38.5% (80/208) were PCR positive, 40.9% (85/208) were IgM positive and 36.1% (75/208) were IgG positive for dengue virus. The results reveal the detection rate of dengue virus infection was similar for PCR and dengue antibody (65.9%) and for NS1 antigen and dengue antibody (62.0%) combinations. Therefore, the dengue NS1 antigen test can be used to complement the current antibody test used in peripheral laboratories. Thus, the combination of the NS1 antigen and antibody tests could increase the diagnostic efficiency for early diagnosis of dengue infection.
    Matched MeSH terms: Dengue Virus/genetics
  11. Franco L, Palacios G, Martinez JA, Vázquez A, Savji N, De Ory F, et al.
    PLoS Negl Trop Dis, 2011 Aug;5(8):e1251.
    PMID: 21829739 DOI: 10.1371/journal.pntd.0001251
    Dengue virus (DENV) circulates in human and sylvatic cycles. Sylvatic strains are both ecologically and evolutionarily distinct from endemic viruses. Although sylvatic dengue cycles occur in West African countries and Malaysia, only a few cases of mild human disease caused by sylvatic strains and one single case of dengue hemorrhagic fever in Malaysia have been reported. Here we report a case of dengue hemorrhagic fever (DHF) with thrombocytopenia (13000/µl), a raised hematocrit (32% above baseline) and mucosal bleeding in a 27-year-old male returning to Spain in November 2009 after visiting his home country Guinea Bissau. Sylvatic DENV-2 West African lineage was isolated from blood and sera. This is the first case of DHF associated with sylvatic DENV-2 in Africa and the second case worldwide of DHF caused by a sylvatic strain.
    Matched MeSH terms: Dengue Virus/genetics
  12. Wong SS, Abd-Jamil J, Abubakar S
    Viral Immunol, 2007 Sep;20(3):359-68.
    PMID: 17931106
    Outbreaks involving dengue viruses (DENV) of the same genotype occur in a cyclical pattern in Malaysia. Two cycles of outbreaks involving dengue virus type 2 (DENV-2) of the same genotype occurred in the 1990s in the Klang Valley, Malaysia. Sera of patients from the first outbreak and sera of mice inoculated with virus from the same outbreak had poorer neutralization activity against virus of the second outbreak. Conversely, patient sera from the second outbreak showed higher neutralization titer against virus of the early outbreak. At subneutralizing concentrations, sera of mice immunized with second outbreak virus did not significantly enhance infection with viruses from the earlier outbreak. Amino acid substitution from valine to isoleucine at position 129 of the envelope protein (E), as well as threonine to alanine at position 117 and lysine to arginine at position 272 of the NS1 protein, differentiated viruses of the two outbreaks. These findings highlight the potential influence of specific intragenotypic variations in eliciting varied host immune responses against the different DENV subgenotypes. This could be an important contributing factor in the recurring homogenotypic dengue virus outbreaks seen in dengue-endemic regions.
    Matched MeSH terms: Dengue Virus/genetics
  13. L'Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, et al.
    N Engl J Med, 2016 Mar 24;374(12):1155-66.
    PMID: 27007959 DOI: 10.1056/NEJMoa1503877
    BACKGROUND: The control groups in two phase 3 trials of dengue vaccine efficacy included two large regional cohorts that were followed up for dengue infection. These cohorts provided a sample for epidemiologic analyses of symptomatic dengue in children across 10 countries in Southeast Asia and Latin America in which dengue is endemic.
    METHODS: We monitored acute febrile illness and virologically confirmed dengue (VCD) in 3424 healthy children, 2 to 16 years of age, in Asia (Indonesia, Malaysia, the Philippines, Thailand, and Vietnam) from June 2011 through December 2013 and in 6939 children, 9 to 18 years of age, in Latin America (Brazil, Colombia, Honduras, Mexico, and Puerto Rico) from June 2011 through April 2014. Acute febrile episodes were determined to be VCD by means of a nonstructural protein 1 antigen immunoassay and reverse-transcriptase-polymerase-chain-reaction assays. Dengue hemorrhagic fever was defined according to 1997 World Health Organization criteria.
    RESULTS: Approximately 10% of the febrile episodes in each cohort were confirmed to be VCD, with 319 VCD episodes (4.6 episodes per 100 person-years) occurring in the Asian cohort and 389 VCD episodes (2.9 episodes per 100 person-years) occurring in the Latin American cohort; no trend according to age group was observed. The incidence of dengue hemorrhagic fever was less than 0.3 episodes per 100 person-years in each cohort. The percentage of VCD episodes requiring hospitalization was 19.1% in the Asian cohort and 11.1% in the Latin American cohort. In comparable age groups (9 to 12 years and 13 to 16 years), the burden of dengue was higher in Asia than in Latin America.
    CONCLUSIONS: The burdens of dengue were substantial in the two regions and in all age groups. Burdens varied widely according to country, but the rates were generally higher and the disease more frequently severe in Asian countries than in Latin American countries. (Funded by Sanofi Pasteur; CYD14 and CYD15 ClinicalTrials.gov numbers, NCT01373281 and NCT01374516.).
    Note: Malaysia is a study site (CYD14 Primary Study Group authors: HIHJMI, Pediatric Institute, Kuala Lumpur Hospital, Kuala Lumpur; RN, Department of Paediatrics, Hospital Pulau Pinang, Pulau Pinang, Malaysia)
    Matched MeSH terms: Dengue Virus/genetics
  14. Kobayashi N, Thayan R, Sugimoto C, Oda K, Saat Z, Vijayamalar B, et al.
    Am J Trop Med Hyg, 1999 Jun;60(6):904-9.
    PMID: 10403318
    To characterize the dengue epidemic that recently occurred in Malaysia, we sequenced cDNAs from nine 1993-1994 dengue virus type-3 (DEN-3) isolates in Malaysia (DEN-3 was the most common type in Malaysia during this period). Nucleic acid sequences (720 nucleotides in length) from the nine isolates, encompassing the precursor of membrane protein (preM) and membrane (M) protein genes and part of the envelope (E) protein gene were aligned with various reference DEN-3 sequences to generate a neighbor-joining phylogenetic tree. According to the constructed tree, the nine Malaysian isolates were grouped into subtype II, which comprises Thai isolates from 1962 to 1987. Five earlier DEN-3 virus Malaysian isolates from 1974 to 1981 belonged to subtype I. The present data indicate that the recent dengue epidemic in Malaysia was due to the introduction of DEN-3 viruses previously endemic to Thailand.
    Matched MeSH terms: Dengue Virus/genetics
  15. Guan J, He Z, Qin M, Deng X, Chen J, Duan S, et al.
    BMC Infect Dis, 2021 Feb 10;21(1):166.
    PMID: 33568111 DOI: 10.1186/s12879-021-05823-3
    BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported.

    METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed.

    RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China.

    CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.

    Matched MeSH terms: Dengue Virus/genetics*
  16. Jabanathan SG, Xuan LZ, Ramanathan B
    Methods Mol Biol, 2021;2296:279-302.
    PMID: 33977455 DOI: 10.1007/978-1-0716-1358-0_17
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in over 100 countries. The increase in prevalence would require a long-term measure to control outbreaks. Sanofi Pasteur has licensed the tetravalent dengue vaccine (Dengvaxia) in certain dengue endemic countries. However, the efficacy of the vaccine is limited against certain dengue serotypes and can only be used for individuals from the age from 9 to 45 years old. Over the years, there has been intense research conducted on the development of antivirals against dengue virus (DENV) through either inhibiting the virus replication or targeting the host cell mechanism to block the virus entry. However, no approved antiviral drug against dengue is yet available. In this chapter, we describe the dengue antiviral development workflow including (i) prophylactic, (ii) virucidal, and (iii) postinfection assays that are employed in the antiviral drug screening process against DENV. Further, we demonstrate different methods that can be used to enumerate the reduction in virus foci number including foci-forming unit reduction assay (FFURA), estimation of viral RNA copy number through quantitative real-time PCR, and a high-throughput enzyme linked immunosorbent assay (ELISA)-based quantification of virus particles.
    Matched MeSH terms: Dengue Virus/genetics
  17. Chem YK, Chua KB, Malik Y, Voon K
    Trop Biomed, 2015 Jun;32(2):344-51.
    PMID: 26691263 MyJurnal
    Monoclonal antibody-escape variant of dengue virus type 1 (MabEV DEN-1) was discovered and isolated in an outbreak of dengue in Klang Valley, Malaysia from December 2004 to March 2005. This study was done to investigate whether DEN152 (an isolate of MabEV DEN-1) is a product of recombination event or not. In addition, the non-synonymous mutations that correlate with the monoclonal antibody-escape variant were determined in this study. The genomes of DEN152 and two new DEN-1 isolates, DENB04 and DENK154 were completely sequenced, aligned, and compared. Phylogenetic tree was plotted and the recombination event on DEN152 was investigated. DEN152 is sub-grouped under genotype I and is closely related genetically to a DEN-1 isolated in Japan in 2004. DEN152 is not a recombinant product of any parental strains. Four amino acid substitutions were unique only to DEN 152. These amino acid substitutions were (Ser)[326](Leu), (Ser)[340](Leu) at the deduced E protein, (Ile)[250](Thr) at NS1 protein, and (Thr)[41](Ser) at NS5 protein. Thus, DEN152 is an isolate of the emerging monoclonal antibody-escape variant DEN-1 that escaped diagnostic laboratory detection.
    Matched MeSH terms: Dengue Virus/genetics
  18. Suppiah J, Ching SM, Amin-Nordin S, Mat-Nor LA, Ahmad-Najimudin NA, Low GK, et al.
    PLoS Negl Trop Dis, 2018 09;12(9):e0006817.
    PMID: 30226880 DOI: 10.1371/journal.pntd.0006817
    BACKGROUND: Malaysia experienced an unprecedented dengue outbreak from the year 2014 to 2016 that resulted in an enormous increase in the number of cases and mortality as compared to previous years. The causes that attribute to a dengue outbreak can be multifactorial. Viral factors, such as dengue serotype and genotype, are the components of interest in this study. Although only a small number of studies investigated the association between the serotype of dengue virus and clinical manifestations, none of these studies included analyses on dengue genotypes. The present study aims to investigate dengue serotype and genotype-specific clinical characteristics among dengue fever and severe dengue cases from two Malaysian tertiary hospitals between 2014 and mid-2017.

    METHODOLOGY AND PRINCIPAL FINDINGS: A total of 120 retrospective dengue serum specimens were subjected to serotyping and genotyping by Taqman Real-Time RT-PCR, sequencing and phylogenetic analysis. Subsequently, the dengue serotype and genotype data were statistically analyzed for 101 of 120 corresponding patients' clinical manifestations to generate a descriptive relation between the genetic components and clinical outcomes of dengue infected patients. During the study period, predominant dengue serotype and genotype were found to be DENV 1 genotype I. Additionally, non-severe clinical manifestations were commonly observed in patients infected with DENV 1 and DENV 3. Meanwhile, patients with DENV 2 infection showed significant warning signs and developed severe dengue (p = 0.007). Cases infected with DENV 2 were also commonly presented with persistent vomiting (p = 0.010), epigastric pain (p = 0.018), plasma leakage (p = 0.004) and shock (p = 0.038). Moreover, myalgia and arthralgia were highly prevalent among DENV 3 infection (p = 0.015; p = 0.014). The comparison of genotype-specific clinical manifestations showed that DENV 2 Cosmopolitan was significantly common among severe dengue patients. An association was also found between genotype I of DENV 3 and myalgia. In a similar vein, genotype III of DENV 3 was significantly common among patients with arthralgia.

    CONCLUSION: The current data contended that different dengue serotype and genotype had caused distinct clinical characteristics in infected patients.

    Matched MeSH terms: Dengue Virus/genetics
  19. Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA
    Eur J Med Chem, 2019 Aug 15;176:431-455.
    PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010
    Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
    Matched MeSH terms: Dengue Virus/genetics
  20. Ahmad Z, Poh CL
    Int J Med Sci, 2019;16(3):355-365.
    PMID: 30911269 DOI: 10.7150/ijms.29938
    Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus in vitro and/or in vivo have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.
    Matched MeSH terms: Dengue Virus/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links