Displaying publications 1 - 20 of 140 in total

Abstract:
Sort:
  1. Veronica N, Heng PWS, Liew CV
    Mol Pharm, 2023 Feb 06;20(2):1072-1085.
    PMID: 36480246 DOI: 10.1021/acs.molpharmaceut.2c00812
    The stability of a moisture-sensitive drug in tablet formulations depends particularly on the environment's relative humidity (RH) and the products' prior exposure to moisture. This study was designed to understand drug stability in relation to the moisture interaction of the excipients, moisture history of the tablets, and RH of the environment. The stability study was performed on tablets containing acetylsalicylic acid (ASA), formulated with common pharmaceutical excipients like native maize starch, microcrystalline cellulose (MCC), partially pregelatinized maize starch (PGS), dicalcium phosphate dihydrate (DCP), lactose, and mannitol. The tablets were subjected to storage conditions with RH cycling alternating between 53% and 75%. Results were also compared to tablets stored at a constant RH of 53% or 75%. The excipients demonstrated marked differences in their interactions with moisture. They could be broadly grouped as excipients with RH-dependent moisture content (native maize starch, MCC, and PGS) and RH-independent moisture content (DCP, lactose, and mannitol). As each excipient interacted differently with moisture, degradation of ASA in the tablets depended on the excipients' ability to modulate the moisture availability for degradation. The lowest ASA degradation was observed in tablets formulated with low moisture content water-soluble excipients, such as lactose and mannitol. The impact of RH cycling on ASA stability was apparent in tablets containing native maize starch, MCC, PGS, or DCP. These findings suggested that the choice of excipients influences the effect of moisture history on drug stability. The results from studies investigating moisture interaction of excipients and drug stability are valuable to understanding the inter-relationship between excipients, moisture history, and drug stability.
    Matched MeSH terms: Drug Stability
  2. Chai TT, Koh JA, Wong CC, Sabri MZ, Wong FC
    Molecules, 2021 Dec 06;26(23).
    PMID: 34885982 DOI: 10.3390/molecules26237396
    Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
    Matched MeSH terms: Drug Stability
  3. Osman WNAW, Selvarajah D, Samsuri S
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443445 DOI: 10.3390/molecules26164856
    Saponin is a biopesticide used to suppress the growth of the golden apple snail population. This study aims to determine the stabilized conditions for saponin storage. The maceration process was used for saponin extraction, and for saponin concentration, progressive freeze concentration (PFC) was used. Afterwards, stability analysis was performed by storing the sample for 21 days in two conditions: Room temperature (26 °C) and cold room (10 °C). The samples kept in a cold room were sterilized samples that undergo thermal treatment by placing the sample in the water bath. The non-sterilized samples were kept in room temperature condition for 21 days. The results showed that saponin stored in the cold room (sterilized sample) has low degradation with higher concentration than those stored at room temperature in stability analysis with the highest saponin concentration (0.730 mg/mL) at a concentration temperature of -6 °C and concentration time of 15 min. The lowest saponin concentration obtained by saponin stored at room temperature (non-sterilized sample) is 0.025 mg/mL at a concentration temperature of -6 °C and concentration time of 10 min. Thus, the finding concluded that saponin is sensitive to temperature. Hence, the best storage condition to store saponin after thermal treatment is to keep it in a cold room at 10 °C.
    Matched MeSH terms: Drug Stability
  4. Khursheed R, Singh SK, Gulati M, Wadhwa S, Kapoor B, Pandey NK, et al.
    Int J Biol Macromol, 2021 Jul 31;183:1630-1639.
    PMID: 34015408 DOI: 10.1016/j.ijbiomac.2021.05.064
    Ganoderma lucidium extract powder (GLEP) contains various polysaccharides which are well known for their antioxidant and anti-inflammatory actions. Probiotics (PB) are well-established for providing a plethora of health benefits. Hence, use of mushroom polysaccharides and probiotics as carriers to solidify liquisolid formulation is anticipated to function as functional excipients i.e. as adsorbent that may provide therapeutic benefits. Quercetin (QUR) has been used as model lipophilic drug in this study. QUR loaded liquisolid compacts (LSCs) were formulated using Tween 80 as solvent. These were further solidified using a combination of PB and GLEP as carriers. Aerosil-200 (A-200) was used as coating agent. The formulation exhibited very good flow characteristics. Dissolution rate of raw QUR was found to be less than 10% in 60 min while in case of QUR loaded LSCs, more than 90% drug release was observed within 5 min. Absence of crystalline peaks of QUR in the DSC and PXRD reports of LSCs and their porous appearance in SEM micrographs indicate that QUR was successfully incorporated in the LSCs. The developed formulation was found to be stable on storage under accelerated stability conditions.
    Matched MeSH terms: Drug Stability
  5. Morokuma K, Matsumura T, Yamamoto A, Sakai A, Hifumi T, Ato M, et al.
    Trop Biomed, 2021 Jun 01;38(2):111-118.
    PMID: 34172698 DOI: 10.47665/tb.38.2.042
    In 2000, an equine Yamakagashi (Rhabdophis tigrinus) antivenom (Lot 0001) was testmanufactured as an unapproved drug for treatment of Yamakagashi bites. It was stocked on the premise of super-legal use from the viewpoint of emergency health crisis management. The antivenom showed a strong neutralizing ability against the hemorrhagic and coagulation activity of the Yamakagashi venom in its potency test. One vial of the antivenom can effectively neutralize at least about 4 mg of Yamakagashi venom. Its efficacy has also been confirmed in patients with severe cases of R. tigrinus bite that has been used in emergency. In 2020, this antivenom (Lot 0001) has reached 20 years after its production. To evaluate the integrity and potency of the antivenom, quality control, safety and potency tests had been conducted almost every year since 2012. Physical and chemical tests (property test, moisture content test, insoluble foreign matter test, osmotic pressure ratio test, pH test, protein content test, endotoxin test, sterility test) of the antivenom, showed no significant changes throughout the years, when compared to the results immediately after its production in 2000. All the parameters measured were also within the standard values. In animal safety tests (test for absence of toxicity and pyrogen), there was no change in the test results during the storage period and no abnormalities were observed. The potency test (anti-coagulant activity) after 20 years of the product, showed the same potency as those recorded immediately after production. Therefore, in all of the stability monitoring tests conducted so far, the product did not show any significant change compared to the results immediately after production. This confirms the stability of the product during the stockpiling period to the present, that is, 20 years after production.
    Matched MeSH terms: Drug Stability*
  6. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Drug Stability
  7. Lakshmanan S, Yung YL
    PMID: 33596165 DOI: 10.1080/19440049.2020.1842516
    Chloride reduction in crude palm oil (CPO) of greater than 80% was achieved with water washing conducted at 90°C. Inorganic chloride content in CPO was largely removed through washing, with no significant reduction in the organic chloride. Phosphorous content of CPO reduced by 20%, while trace elements such as calcium, magnesium and iron were also reduced in the washing operation. The 3-MCPDE formed in the refined, bleached and deodorised palm oil displayed (RBDPO) a linear relationship with the chloride level in washed CPO, which could be represented by the equation y = 0.91x, where y is 3-MCPDE and x represents the chloride in RBDPO refined from washed CPO. In plant scale trials using 5% water at 90°C, mild acidification of the wash water at 0.05% reduced chloride by average 76% in washed CPO. Utilising selected bleaching earths, controlled wash water temperature and wash water volume produced low chloride levels in RBDPO. Chloride content less than 1.4 mg kg-1 in plant RBDPO production was achieved, through physical refining of washed CPO containing less than 2 mg kg-1 chloride and would correspond to 3-MCPDE levels of 1.25 mg kg-1 in RBDPO. The 3-MCPDE reduced further to 1.1 mg kg-1 as the chloride level of washed CPO decreased below 1.8 mg kg-1. Chloride has been shown to facilitate the 3-MCPDE formation and its removal in lab scale washing study has yielded lower 3-MCPDE levels formed in RBDPO. In actual plant operations using washed CPO, 3-MCPDE levels below 1.25 mg kg-1 were achieved consistently in RBDPO.
    Matched MeSH terms: Drug Stability
  8. Toopkanloo SP, Tan TB, Abas F, Azam M, Nehdi IA, Tan CP
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322600 DOI: 10.3390/molecules25245873
    In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.
    Matched MeSH terms: Drug Stability
  9. Abudula T, Gauthaman K, Mostafavi A, Alshahrie A, Salah N, Morganti P, et al.
    Sci Rep, 2020 11 24;10(1):20428.
    PMID: 33235239 DOI: 10.1038/s41598-020-76971-w
    Non-healing wounds have placed an enormous stress on both patients and healthcare systems worldwide. Severe complications induced by these wounds can lead to limb amputation or even death and urgently require more effective treatments. Electrospun scaffolds have great potential for improving wound healing treatments by providing controlled drug delivery. Previously, we developed fibrous scaffolds from complex carbohydrate polymers [i.e. chitin-lignin (CL) gels]. However, their application was limited by solubility and undesirable burst drug release. Here, a coaxial electrospinning is applied to encapsulate the CL gels with polycaprolactone (PCL). Presence of a PCL shell layer thus provides longer shelf-life for the CL gels in a wet environment and sustainable drug release. Antibiotics loaded into core-shell fibrous platform effectively inhibit both gram-positive and -negative bacteria without inducting observable cytotoxicity. Therefore, PCL coated CL fibrous gel platforms appear to be good candidates for controlled drug release based wound dressing applications.
    Matched MeSH terms: Drug Stability
  10. Mahmood S, Kiong KC, Tham CS, Chien TC, Hilles AR, Venugopal JR
    AAPS PharmSciTech, 2020 Oct 14;21(7):285.
    PMID: 33057878 DOI: 10.1208/s12249-020-01810-0
    Currently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs. The study focused on the encapsulation of the ACV in lipid polymeric particle and their sustained delivery. The formulation developed for the self-assembly of chitosan and lecithin to form a shell encapsulating acyclovir, followed by PEGylation. Optimisation was performed via Box-Behnken Design (BBD), forming nanoparticles with size of 187.7 ± 3.75 nm, 83.81 ± 1.93% drug-entrapped efficiency (EE), and + 37.7 ± 1.16 mV zeta potential. Scanning electron microscopy and transmission electron microscopy images displayed spherical nanoparticles formation. Encapsulation of ACV and complexity with other physical parameters are confirmed through analysis using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Nanoparticle produced was capable of achieving 24-h sustained release in vitro on gastric and intestinal environments. Ex vivo study proved the improvement of acyclovir's apparent permeability from 2 × 10-6 to 6.46 × 10-6 cm s-1. Acyclovir new formulation was achieved to be stable up to 60 days for controlled release of the drugs. Graphical abstract.
    Matched MeSH terms: Drug Stability
  11. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
    Matched MeSH terms: Drug Stability
  12. Donnan F, Senarathna SMDKG, Ware B, Rawlins MDM, Dontham C, Chuang VTG, et al.
    Aust N Z J Obstet Gynaecol, 2020 06;60(3):344-349.
    PMID: 31512230 DOI: 10.1111/ajo.13046
    BACKGROUND: Postpartum haemorrhage (PPH) kits containing uterotonics are used on obstetric units for the timely management of PPH. Visible discolouration of ergometrine and ergometrine-oxytocin injections was observed in PPH kits stored in medical refrigerators on the obstetric unit at our hospital.

    AIM: To investigate the stability of ergometrine and ergometrine-oxytocin injections in PPH kits under simulated clinical storage conditions and to determine the potency of ampoules quarantined from PPH kits on our obstetric unit.

    MATERIAL AND METHODS: Ergometrine and ergometrine-oxytocin injection ampoules were stored exposed to and protected from light at 4°C and room temperature (25°C) for up to three months, and assayed by high-performance liquid chromatography. Stability was based on the time for the ergometrine or oxytocin concentration to fall to 90% of the original concentration (t90 ). The potency of quarantined discoloured ampoules also was determined.

    RESULTS: Ergometrine was stable at both temperatures for >6 months, when stored protected from light in simulated clinical conditions. When exposed to light, ergometrine was stable for approximately 4 days at 25°C and 10 days at 4°C. Discoloured ergometrine and ergometrine-oxytocin injection ampoules were found to be <90% of the nominal concentration.

    CONCLUSION: Stability of ergometrine in PPH kits is largely unaffected by temperature fluctuations (at 4°C and 25°C) over 6 months when protected from light. Ergometrine and ergometrine-oxytocin ampoules should be inspected prior to use and any discoloured ampoules discarded.

    Matched MeSH terms: Drug Stability
  13. Ali MA, Islam MA, Othman NH, Noor AM, Ibrahim M
    Acta Sci Pol Technol Aliment, 2020 1 14;18(4):427-438.
    PMID: 31930793 DOI: 10.17306/J.AFS.0694
    BACKGROUND: Rice bran oil (RBO) contains significant amounts of micronutrients (oryzanol, tocotrienol, tocopherol, phytosterols etc.) that impart a high resistance to thermal oxidation of the oil. The high oxidative stability of RBO can make it a preferred oil to improve the oxidative and flavor stabilities of other oils rich in PUFAs. In this study, the changes in the oxidative status and fatty acid composition in soybean oil (SO) blended with RBO under extreme thermal conditions were evaluated.

    METHODS: The blends were prepared in a volume ratio of 10:90, 20:80, 40:60, and 60:40 (RBO:SO). The changes in the oxidative parameters and fatty acid composition of the samples during heating at frying temperature (170°C) were determined using analytical and instrumental methods. Oxidative alteration was also monitored by recording FTIR spectra of oil samples.

    RESULTS: The increase in oxidative parameters (free fatty acid, color, specific extinctions, peroxide value, p-anisidine value, and thiobarbituric acid value) was greater in pure SO as compared to RBO or blend oils during heating. This indicates that the SO samples incorporated with RBO have the least degradation, while pure SO has the highest. Blending resulted in a lower level of polyunsaturated fatty acids (PUFA)  with       a higher level of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). During heating, the relative content of PUFA decreased and that of SFA increased. However, the presence of RBO in SO slowed down the oxidative deterioration of PUFA. In FTIR, the peak intensities in SO were markedly changed in comparison with blend oils during heating. The reduction in the formation of oxidative products in SO during thermal treatment increased as the concentration of the RBO in SO increased; however, the levels of the protective effect of RBO did not increase steadily with an increase in its concentration.

    CONCLUSIONS: During thermal treatment, the generation of hydroperoxides, their degradation and formation of secondary oxidative products as evaluated by oxidative indices, fatty acids and IR absorbances were lower in blend oils compared to pure SO. In conclusion, RBO can significantly retard the process of lipid peroxidation in SO during heating at frying temperature.

    Matched MeSH terms: Drug Stability
  14. Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK
    Mater Sci Eng C Mater Biol Appl, 2020 Jan;106:110275.
    PMID: 31753398 DOI: 10.1016/j.msec.2019.110275
    Etoposide (ETS), topoisomerase-II inhibitor, is a first-line anticancer therapeutics used in diverse cancer types. However, the therapeutic potential of this molecule has mainly impeded due to its detrimental toxicity profile, unfavorable rejection by the cancer cells due to P-glycoprotein (P-gp) efflux activity, and rapid hepatic clearance through extensive metabolism by Cytochrome-P450. To increase the therapeutic potency without significant adverse effects, the implication of novel ETS-nanoformulation strategies have recommended mainly. Nanomedicine based nanoformulation approaches based on nanoparticles (NPs), dendrimers, carbon-nanotubes (CNTs), liposomes, polymeric micelles, emulsions, dendrimers, solid-lipid NPs, etc offers immense potential opportunities to improve the therapeutic potential of pharmaceutically problematic drugs. This review provides an up-to-date argument on the work done in the field of nanomedicine to resolve pharmacokinetic and pharmacodynamic issues associated with ETS. The review also expounds the progress in regards to the regulatory, patenting and clinical trials related to the innovative formulation aspects of ETS.
    Matched MeSH terms: Drug Stability
  15. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

    Matched MeSH terms: Drug Stability
  16. Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, et al.
    Drug Des Devel Ther, 2020;14:27-41.
    PMID: 32021089 DOI: 10.2147/DDDT.S232111
    BACKGROUND: Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers.

    PURPOSE OF THE STUDY: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability.

    MATERIALS AND METHODS: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation.

    RESULTS: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed.

    CONCLUSION: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.

    Matched MeSH terms: Drug Stability
  17. Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, et al.
    Int J Nanomedicine, 2020;15:5417-5432.
    PMID: 32801697 DOI: 10.2147/IJN.S250047
    INTRODUCTION: Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy.

    MATERIALS AND METHODS: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment.

    RESULTS: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively.

    DISCUSSION: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.

    Matched MeSH terms: Drug Stability
  18. Ayub AD, Chiu HI, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):353-369.
    PMID: 30691309 DOI: 10.1080/21691401.2018.1557672
    The application of layer-by-layer (LbL) approach on nanoparticle surface coating improves the colon-specific drug delivery of insoluble drugs. Here, we aimed to formulate a self-assembled cysteamine-based disulphide cross-linked sodium alginate with LbL self-assembly to improve the delivery of paclitaxel (PCX) to colonic cancer cells. Cysteamine was conjugated to the backbone of oxidized SA to form a core of self-assembled disulphide cross-linked nanospheres. P3DL was selected for PCX loading and fabricated LbL with poly(allylamine hydrochloride) (PAH) and poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSCMA) resulting from characterization and drug release studies. P3DL-fabricated PCX-loaded nanospheres (P3DL/PAH/PSSCMA) exhibited an encapsulation efficiency of 77.1% with cumulative drug release of 45.1%. Dynamic light scattering analysis was reported at 173.6 ± 2.5 nm with polydispersity index of 0.394 ± 0.105 (zeta potential= -58.5 mV). P3DL/PAH/PSSCMA demonstrated a pH-dependent swelling transition; from pH 1 to 7 (102.2% increase). The size increased by 33.0% in reduction response study after incubating with 10 mM glutathione (day 7). HT-29 cells showed high viabilities (86.7%) after treatment with the fabricated nanospheres at 0.8 µg/mL. Cellular internalization was successful with more than 70.0% nanospheres detected in HT-29 cells. Therefore, this fabricated nanospheres may be considered as potential nanocarriers for colon cancer-targeted chemotherapeutic drug delivery.
    Matched MeSH terms: Drug Stability
  19. Chen XY, Butt AM, Mohd Amin MCI
    Mol Pharm, 2019 09 03;16(9):3853-3872.
    PMID: 31398038 DOI: 10.1021/acs.molpharmaceut.9b00483
    The development of oral vaccine formulation is crucial to facilitate an effective mass immunization program for various vaccine-preventable diseases. In this work, the efficacy of hepatitis B antigen delivered by bacterial nanocellulose/poly(acrylic acid) composite hydrogel microparticles (MPs) as oral vaccine carriers was assessed to induce both local and systemic immunity. Optimal pH-responsive swelling, mucoadhesiveness, protein drug loading, and drug permeability were characterized by MPs formulated with minimal irradiation doses and acrylic acid concentration. The composite hydrogel materials of bacterial nanocellulose and poly(acrylic acid) showed significantly greater antigen release in simulated intestinal fluid while ensuring the integrity of antigen. In in vivo study, mice orally vaccinated with antigen-loaded hydrogel MPs showed enhanced vaccine immunogenicity with significantly higher secretion of mucosal immunoglobulin A, compared to intramuscular vaccinated control. The splenocytes from the same group demonstrated lymphoproliferation and significant increased secretion of interleukin-2 cytokines upon stimulation with hepatitis B antigen. Expression of CD69 in CD4+ T lymphocytes and CD19+ B lymphocytes in splenocytes from mice orally vaccinated with antigen-loaded hydrogel MPs was comparable to that of the intramuscular vaccinated control, indicating early activation of lymphocytes elicited by our oral vaccine formulation in just two doses. These results demonstrated the potential of antigen-loaded hydrogel MPs as an oral vaccination method for hepatitis B.
    Matched MeSH terms: Drug Stability
  20. Edueng K, Mahlin D, Gråsjö J, Nylander O, Thakrani M, Bergström CAS
    Molecules, 2019 Jul 27;24(15).
    PMID: 31357587 DOI: 10.3390/molecules24152731
    This study explores the effect of physical aging and/or crystallization on the supersaturation potential and crystallization kinetics of amorphous active pharmaceutical ingredients (APIs). Spray-dried, fully amorphous indapamide, metolazone, glibenclamide, hydrocortisone, hydrochlorothiazide, ketoconazole, and sulfathiazole were used as model APIs. The parameters used to assess the supersaturation potential and crystallization kinetics were the maximum supersaturation concentration (Cmax,app), the area under the curve (AUC), and the crystallization rate constant (k). These were compared for freshly spray-dried and aged/crystallized samples. Aged samples were stored at 75% relative humidity for 168 days (6 months) or until they were completely crystallized, whichever came first. The solid-state changes were monitored with differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. Supersaturation potential and crystallization kinetics were investigated using a tenfold supersaturation ratio compared to the thermodynamic solubility using the µDISS Profiler. The physically aged indapamide and metolazone and the minimally crystallized glibenclamide and hydrocortisone did not show significant differences in their Cmax,app and AUC when compared to the freshly spray-dried samples. Ketoconazole, with a crystalline content of 23%, reduced its Cmax,app and AUC by 50%, with Cmax,app being the same as the crystalline solubility. The AUC of aged metolazone, one of the two compounds that remained completely amorphous after storage, significantly improved as the crystallization kinetics significantly decreased. Glibenclamide improved the most in its supersaturation potential from amorphization. The study also revealed that, besides solid-state crystallization during storage, crystallization during dissolution and its corresponding pathway may significantly compromise the supersaturation potential of fully amorphous APIs.
    Matched MeSH terms: Drug Stability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links