Displaying publications 1 - 20 of 128 in total

Abstract:
Sort:
  1. Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al.
    Virus Res, 2017 04 02;233:17-28.
    PMID: 28279803 DOI: 10.1016/j.virusres.2017.02.012
    Japanese encephalitis (JE) is a neurotropic flavivirus that causes inflammation in central nervous system (CNS), neuronal death and also compromises the structural and functional integrity of the blood-brain barrier (BBB). The aim of this study was to evaluate the BBB disruption and apoptotic process in Japanese encephalitis virus (JEV)-infected transfected human brain microvascular endothelial cells (THBMECs). THBMECs were overlaid by JEV with different MOIs (0.5, 1.0, 5.0 and 10.0) and monitored by electrical cell-substrate impedance sensing (ECIS) in a real-time manner in order to observe the barrier function of THBMECs. Additionally, the level of 43 apoptotic proteins was quantified in the virally infected cells with different MOIs at 24h post infection. Infection of THBMEC with JEV induced an acute reduction in transendothelial electrical resistance (TEER) after viral infection. Also, significant up-regulation of Bax, BID, Fas and Fasl and down-regulation of IGFBP-2, BID, p27 and p53 were observed in JEV infected THBMECs with 0.5 and 10 MOIs compared to uninfected cells. Hence, the permeability of THBMECs is compromised during the JEV infection. In addition high viral load of the virus has the potential to subvert the host cell apoptosis to optimize the course of viral infection through deactivation of pro-apoptotic proteins.
    Matched MeSH terms: Electric Impedance
  2. Khan YH, Sarriff A, Adnan AS, Khan AH, Mallhi TH
    Clin Exp Nephrol, 2017 Jun;21(3):488-496.
    PMID: 27402286 DOI: 10.1007/s10157-016-1303-7
    INTRODUCTION: The relationship between hypertension and fluid overload in pre-dialysis CKD patients need to be elucidated. Current study aimed to find relationship between fluid overload and hypertension along with prescribed diuretic therapy using bioimpedance spectroscopy (BIS).

    METHODOLOGY: A prospective observational study was conducted by inviting pre-dialysis CKD patients. Fluid overload was assessed by BIS.

    RESULTS: A total of 312 CKD patients with mean eGFR 24.5 ± 11.2 ml/min/1.73 m2were enrolled. Based on OH value ≥7 %, 135 (43.3 %) patients were hypervolemic while euvolemia was observed in 177 (56.7 %) patients. Patients were categorized in different regions of hydration reference plot (HRP) generated by BIS i.e., 5.1 % in region-N (normal BP and fluid status), 20.5 % in region I (hypertensive with severe fluid overload), 29.5 % in region I-II (hypertensive with mild fluid overload), 22 % in region II (hypertensive with normohydration), 10.2 % in region III (underhydration with normal/low BP) and 12.5 % in region IV (normal BP with severe fluid overload). A total of 144 (46 %) patients received diuretics on basis of physician assessment of BP and edema. Maximum diuretics 100 (69.4 %) were prescribed in patients belonging to regions I and I-II of HRP. Interestingly, a similar number of diuretic prescriptions were observed in region II (13 %) and region IV (12 %). Surprisingly, 7 (4.9 %) of patients in region III who were neither hypervolemic nor hypertensive were also prescribed with diuretics.

    CONCLUSION: BIS can aid clinicians to categorize CKD patients on basis of their fluid status and provide individualized pharmacotherapy to manage hypertensive CKD patients.

    Matched MeSH terms: Electric Impedance
  3. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Electric Impedance
  4. Lee ST, Wong PF, Cheah SC, Mustafa MR
    PLoS One, 2011;6(4):e18915.
    PMID: 21541327 DOI: 10.1371/journal.pone.0018915
    Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.
    Matched MeSH terms: Electric Impedance
  5. Vairavan R, Abdullah O, Retnasamy PB, Sauli Z, Shahimin MM, Retnasamy V
    Curr Med Imaging Rev, 2019;15(2):85-121.
    PMID: 31975658 DOI: 10.2174/1573405613666170912115617
    BACKGROUND: Breast carcinoma is a life threatening disease that accounts for 25.1% of all carcinoma among women worldwide. Early detection of the disease enhances the chance for survival.

    DISCUSSION: This paper presents comprehensive report on breast carcinoma disease and its modalities available for detection and diagnosis, as it delves into the screening and detection modalities with special focus placed on the non-invasive techniques and its recent advancement work done, as well as a proposal on a novel method for the application of early breast carcinoma detection.

    CONCLUSION: This paper aims to serve as a foundation guidance for the reader to attain bird's eye understanding on breast carcinoma disease and its current non-invasive modalities.

    Matched MeSH terms: Electric Impedance
  6. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
    Matched MeSH terms: Electric Impedance
  7. Zain NM, Chelliah KK
    Asian Pac J Cancer Prev, 2014;15(3):1327-31.
    PMID: 24606460
    BACKGROUND: Electrical impedance tomography (EIT) is a new non-invasive, mobile screening method which does not use ionizing radiation to the human breast; allows conducting quantitative assessment of the images besides the visual interpretation. The aim of this study was to correlate the quantitative assessment and visual interpretation of breast electrical impedance tomographs and associated factors.

    MATERIALS AND METHODS: One hundred and fifty mammography patients above 40 years and undergoing EIT were chosen using convenient sampling. Visual interpretation of the images was carried out by a radiologist with minimum of three years experience using the breast imaging - electrical impedance (BI-EIM) classification for detection of abnormalities. A set of thirty blinded EIT images were reinterpreted to determine the intra-rater reliability using kappa. Quantitative assessment was by comparison of the breast average electric conductivity with the norm and correlations with visual interpretation of the images were determined using Chi-square. One-way ANOVA was used to compare the mean electrical conductivity between groups and t-test was used for comparisons with pre-existing Caucasians statistics. Independent t-tests were applied to compare the mean electrical conductivity of women with factors like exogenous hormone use and family history of breast cancer.

    RESULTS: The mean electrical conductivity of Malaysian women was significantly lower than that of Caucasians (p<0.05). Quantitative assessment of electrical impedance tomography was significantly related with visual interpretation of images of the breast (p<0.05).

    CONCLUSIONS: Quantitative assessment of electrical impedance tomography images was significantly related with visual interpretation.

    Matched MeSH terms: Electric Impedance
  8. Thavagnanam S, Parker JC, McBrien ME, Skibinski G, Shields MD, Heaney LG
    PLoS One, 2014;9(1):e85802.
    PMID: 24475053 DOI: 10.1371/journal.pone.0085802
    Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface cultures.
    Matched MeSH terms: Electric Impedance
  9. Juliana N, Shahar S, Sahar MA, Ghazali AR, Manaf ZA, Noah RM
    Asia Pac J Clin Nutr, 2017 Mar;26(2):278-286.
    PMID: 28244706 DOI: 10.6133/apjcn.122015.05
    BACKGROUND AND OBJECTIVES: Nutrition and physical activity interventions is beneficial in reversing obesity. However far too little attention has been paid to the effect of these interventions on breast tissues. Thus, the aim of this study was to explore the effect of a home-based dietary and physical activity intervention (the Her Shape Program) on metabolic parameters, blood biomarkers and adiposity at the breast.

    METHODS AND STUDY DESIGN: A randomized controlled study was conducted on obese women with high breast adiposity (<0.1 Sm-1), aged 40-60 years in Klang Valley, Malaysia. Subjects were assigned to intervention (n=16) and control group (n=15). Intervention group received a home based health education package with close monitoring weekly, personal diet consultation and physical training in group. Assessment was ascertained at three time points; baseline, weeks 8 and 16. Outcome measures were the energy intake, physical activity, body composition, blood tests, blood biomarkers and electrical impedance tomography (EIT) quantitative values. Analyses were done using 2-way repeated measures ANOVA.

    RESULTS AND CONCLUSIONS: All subjects completed the program without any drop-out. The HSI group had 100% compliance towards the intervention program; their energy intake was reduced for approximately 35% and their activity score was increased for approximately 11%. A significant interaction effect was found in body weight, body mass index (BMI), total cholesterol/HDL, vitamin C intake and matrix metallopeptidase 9 (MMP-9) (p<0.05). Interestingly, their EIT extremum values were also significantly increased indicating a reduction of breast adiposity. The intervention program was successful in improving body composition, physical activities, MMP9 and breast adipose tissue composition.

    Matched MeSH terms: Electric Impedance
  10. Maherally Z, Fillmore HL, Tan SL, Tan SF, Jassam SA, Quack FI, et al.
    FASEB J, 2018 01;32(1):168-182.
    PMID: 28883042 DOI: 10.1096/fj.201700162R
    The blood-brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins-laminin, fibronectin, collagen type IV, agrin, and perlecan-on adhesion and TEER was assessed using an electric cell-substrate impedance-sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.-Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity.
    Matched MeSH terms: Electric Impedance
  11. Juliana N, Shahar S, Chelliah KK, Ghazali AR, Osman F, Sahar MA
    Asian Pac J Cancer Prev, 2014;15(14):5759-65.
    PMID: 25081698
    Electrical impedance tomography (EIT) is a potential supplement for mammogram screening. This study aimed to evaluate and feasibility of EIT as opposed to mammography and to determine pain perception with both imaging methods. Women undergoing screening mammography at the Radiology Department of National University of Malaysia Medical Centre were randomly selected for EIT imaging. All women were requested to give a pain score after each imaging session. Two independent raters were chosen to define the image findings of EIT. A total of 164 women in the age range from 40 to 65-year-old participated and were divided into two groups; normal and abnormal. EIT sensitivity and specificity for rater 1 were 69.4% and 63.3, whereas for rater 2 they were 55.3% and 57.0% respectively. The reliability for each rater ranged between good to very good (p<0.05). Quantitative values of EIT showed there were significant differences in all values between groups (ANCOVA, p<0.05). Interestingly, EIT scored a median pain score of 1.51±0.75 whereas mammography scored 4.15±0.87 (Mann Whitney U test, p<0.05). From these quantitative values, EIT has the potential as a health discriminating index. Its ability to replace image findings from mammography needs further investigation.
    Matched MeSH terms: Electric Impedance
  12. Yusof SR, Avdeef A, Abbott NJ
    Eur J Pharm Sci, 2014 Dec 18;65:98-111.
    PMID: 25239510 DOI: 10.1016/j.ejps.2014.09.009
    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software analysis provides a useful tool to better predict BBB permeability in vivo and gain better mechanistic information about BBB permeation.
    Matched MeSH terms: Electric Impedance
  13. Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M, Stevenson AW, Rogers PA, et al.
    PLoS One, 2014;9(6):e100547.
    PMID: 24945301 DOI: 10.1371/journal.pone.0100547
    High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments.
    Matched MeSH terms: Electric Impedance
  14. Ramesh S, Shanti R, Morris E
    Carbohydr Polym, 2013 Jan 2;91(1):14-21.
    PMID: 23044100 DOI: 10.1016/j.carbpol.2012.07.061
    Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced.
    Matched MeSH terms: Electric Impedance
  15. Abdullah WR, Zakaria A, Ghazali MS
    Int J Mol Sci, 2012;13(4):5278-89.
    PMID: 22606043 DOI: 10.3390/ijms13045278
    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr(6)O(11) addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr(6)O(11) from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr(6)O(11) content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.
    Matched MeSH terms: Electric Impedance
  16. Khairul Anwar Zarkasi, Nur Zuliani Ramli, Vennila Gopal, Sadia Choudhury Shimmi, Anne Lolita Miranda, Wan Salman Wan Saudi, et al.
    MyJurnal
    Introduction:Malaysia has the highest prevalence of obesity among the Southeast Asian nations which increases the risk for non-communicable diseases such as diabetes mellitus and hypertension. Since rural communities regularly face challenges in receiving medical services, regular health screening programs targeting these communities are necessary for early diagnosis and intervention to prevent complications as well as preserve the patients’ quality of life. Methods: A community health screening program was performed in the Inanam sub-district of Kota Kinabalu, Sa-bah, Malaysia. A total of 50 participants via convenience sampling were examined for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) to determine their general and central obesity status. Estimation of body fat percentage (Fat%) and body fat mass was conducted by using bioelectrical impedance analysis. Addition-ally, systolic blood pressure (SBP), diastolic blood pressure (DBP), and capillary blood glucose were also measured. Results: The participants had a median age of 39.50 years. The prevalence of general obesity was 28%, while the prevalence of central obesity was 78% (based on WC) and 74% (according to WHR). Hypertension and hyperglyce-mia prevalence was reported at 24% and 20%, respectively. BIA showed that both Fat% and fat mass had positive associations with BMI (r=0.656, p=0.001 for Fat%; r=0.868, p=0.001 for fat mass) and WC (r=0.505, p=0.001 for Fat%; r=0.761, p=0.001 for fat mass). The DBP had positive associations with the BMI (r=0.390, p=0.005), WC (r=0.467, p=0.001), and WHR (r=0.331, p=0.019), while the SBP had a positive association with the WC alone (r=0.341, p=0.015). Conversely, there were no significant associations between capillary blood glucose and BMI, WC, or WHR. Conclusion: The rural community of Inanam sub-district had a higher prevalence of central obesity than the national level. This should raise concern among healthcare professionals regarding future hypertension and hyperglycemia risk in this community.
    Matched MeSH terms: Electric Impedance
  17. Lee SH, Atiya N, Wang SM, Manikam R, Raju CS, Sekaran SD
    Intervirology, 2018;61(4):193-203.
    PMID: 30541013 DOI: 10.1159/000495180
    OBJECTIVE: Herpes simplex virus infection through the neuronal route is the most well-studied mode of viral encephalitis that can persists in a human host for a lifetime. However, the involvement of other possible infection mechanisms by the virus remains underexplored. Therefore, this study aims to determine the temporal effects and mechanisms by which the virus breaches the human brain micro-vascular endothelial cells of the blood-brain barrier.

    METHOD: An electrical cell-substrate impedance-sensing tool was utilized to study the real-time cell-cell barrier or morphological changes in response to the virus infection.

    RESULTS: Herpes simplex virus, regardless of type (i.e., 1 or 2), reduced the cell-cell barrier resistance almost immediately after virus addition to endothelial cells, with negligible involvement of cell-matrix adhesion changes. There is no exclusivity in the infection ability of endothelial cells. From 30 h after HSV infection, there was an increase in cell membrane capacitance with a subsequent loss of cell-matrix adhesion capability, indicating a viability loss of the infected endothelial cells.

    CONCLUSION: This study shows for the first time that destruction of human brain micro-vascular endothelial cells as an in vitro model of the blood-brain barrier could be an alternative invasion mechanism during herpes simplex virus infection.

    Matched MeSH terms: Electric Impedance
  18. Aziz SB, Brza MA, Hamsan EMADMH, Hadi JM, Kadir MFZ, Abdulwahid RT
    Molecules, 2020 Oct 01;25(19).
    PMID: 33019618 DOI: 10.3390/molecules25194503
    Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. The maximum DC ionic conductivity was measured to be 1.016 × 10-5 S cm-1 when 42 wt.% of plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role of lattice energy of magnesium salts in energy storage performance is discussed in detail.
    Matched MeSH terms: Electric Impedance
  19. Khairul Anwar Zarkasi, Vennila Gopal, Sadia Choudhury Shimmi, Anne Lolita Miranda, Wan Salman Wan Saudi, Caroline Sunggip, et al.
    MyJurnal
    Obesity is a known risk factor for non-communicable diseases, including hypertension and diabetes mellitus, with Malaysia having the highest prevalence of obesity among Southeast Asian countries. Additionally, the delivery of medical services to the rural communities remains challenging despite efforts to increase accessibilities to the healthcare facilities. Therefore, regular health screening programmes specifically aiming at these communities are necessary for early diagnosis and intervention to prevent complications while improving the patients’ quality of life. A health screening programme was conducted in a sub-district of Kota Kinabalu, Sabah, Malaysia, where 50 participants were examined for general obesity based on body mass index (BMI) together with central obesity according to waist circumference (WC) and waist-to-hip ratio (WHR). Bioelectrical impedance analysis was performed to estimate body fat percentage (fat%) and body fat mass, along with the measurement of systolic blood pressure (SBP), diastolic blood pressure (DBP), and capillary blood glucose. The median age of the participants was 39.50 years. The prevalence of general obesity, central obesity based on WC and WHR, hypertension, and hyperglycaemia was 28%, 78%, 74%, 24%, and 20%, respectively. Both fat% and fat mass had positive correlations to the BMI (fat%: r = 0.656, p = 0.001; fat mass: r = 0.868, p = 0.001) and WC (fat%: r = 0.505, p = 0.001; fat mass: r = 0.761, p = 0.001). DBP had positive correlations with the BMI (r = 0.390, p = 0.005), WC (r = 0.467, p = 0.001), and WHR (r = 0.331, p = 0.019), while SBP had a positive correlation only with WC (r = 0.341, p = 0.015). Conversely, capillary blood glucose had no significant correlation with either BMI, WC, or WHR. The higher prevalence of central obesity among participants of the health screening program compared to the national level should raise concern among the healthcare providers regarding the future risk for hypertension and hyperglycaemia in this community
    Matched MeSH terms: Electric Impedance
  20. Abidin NZ, Mitra SR
    Curr Gerontol Geriatr Res, 2021;2021:6634474.
    PMID: 33790963 DOI: 10.1155/2021/6634474
    Osteosarcopenic obesity (OSO) describes the concurrent presence of obesity, low bone mass, and low muscle mass in an individual. Currently, no established criteria exist to diagnose OSO. We hypothesized that obese individuals require different cut-points from standard cut-points to define low bone mass and low muscle mass due to their higher weight load. In this study, we determined cutoff values for the screening of osteosarcopenia (OS) in obese postmenopausal Malaysian women based on the measurements of quantitative ultrasound (QUS), bioelectrical impedance analysis (BIA), and functional performance test. Then, we compared the cutoff values derived by 3 different statistical modeling methods, (1) receiver operating characteristic (ROC) curve, (2) lowest quintile of the study population, and (3) 2 standard deviations (SD) below the mean value of a young reference group, and discussed the most suitable method to screen for the presence of OS in obese population. One hundred and forty-one (n = 141) postmenopausal Malaysian women participated in the study. Bone density was assessed using calcaneal quantitative ultrasound. Body composition was assessed using bioelectrical impedance analyzer. Handgrip strength was assessed using a handgrip dynamometer, and physical performance was assessed using a modified Short Physical Performance Battery test. ROC curve was determined to be the most suitable statistical modeling method to derive the cutoffs for the presence of OS in obese population. From the ROC curve method, the final model to estimate the probability of OS in obese postmenopausal women is comprised of five variables: handgrip strength (HGS, with area under the curve (AUC) = 0.698 and threshold ≤ 16.5 kg), skeletal muscle mass index (SMMI, AUC = 0.966 and threshold ≤ 8.2 kg/m2), fat-free mass index (FFMI, AUC = 0.946 and threshold ≤ 15.2 kg/m2), broadband ultrasonic attenuation (BUA, AUC = 0.987 and threshold ≤ 52.85 dB/MHz), and speed of sound (SOS, AUC = 0.991 and threshold ≤ 1492.15 m/s). Portable equipment may be used to screen for OS in obese women. Early identification of OS can help lower the risk of advanced functional impairment that can lead to physical disability in obese postmenopausal women.
    Matched MeSH terms: Electric Impedance
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links