Displaying publications 1 - 20 of 162 in total

Abstract:
Sort:
  1. Alfattal R, Alfarhan M, Algaith AM, Albash B, Elshafie RM, Alshammari A, et al.
    Am J Med Genet A, 2023 May;191(5):1401-1411.
    PMID: 36757047 DOI: 10.1002/ajmg.a.63143
    Defects of respiratory chain complex III (CIII) result in characteristic but rare mitochondrial disorders associated with distinct neuroradiological findings. The underlying molecular defects affecting mitochondrial CIII assembly factors are few and yet to be identified. LYRM7 assembly factor is required for proper CIII assembly where it acts as a chaperone for the Rieske iron-sulfur (UQCRFS1) protein in the mitochondrial matrix and stabilizing it. We present here the seventeenth individual with LYRM7-associated mitochondrial leukoencephalopathy harboring a previously reported rare pathogenic homozygous LYRM 7 variant, c.2T>C, (p.Met1?). Like previously reported individuals, our 5-year-old male proband presented with recurrent metabolic and lactic acidosis, encephalopathy, and fatigue. Further, he has additional, previously unreported features, including an acute stroke like episode with bilateral central blindness and optic neuropathy, recurrent hyperglycemia and hypertension associated with metabolic crisis. However, he has no signs of psychomotor regression. He has been stable clinically with residual left-sided reduced visual acuity and amblyopia, and no more metabolic crises for 2-year-period while on the mitochondrial cocktail. Although the reported brain MRI findings in other affected individuals are homogenous, it is slightly different in our index, revealing evidence of bilateral almost symmetric multifocal periventricular T2 hyperintensities with hyperintensities of the optic nerves, optic chiasm, and corona radiata but with no cavitation or cystic changes. This report describes new clinical and radiological findings of LYRM7-associated disease. The report also summarizes the clinical and molecular data of previously reported individuals describing the full phenotypic spectrum.
    Matched MeSH terms: Electron Transport Complex III
  2. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, et al.
    Chemosphere, 2021 Oct;280:130601.
    PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601
    In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
    Matched MeSH terms: Electron Transport
  3. Mohd Yusoff NIS, Mat Jaafar TNA, Vilasri V, Mohd Nor SA, Seah YG, Habib A, et al.
    Sci Rep, 2021 Jun 25;11(1):13357.
    PMID: 34172804 DOI: 10.1038/s41598-021-92905-6
    Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  4. Leung DHL, Lim YS, Uma K, Pan GT, Lin JH, Chong S, et al.
    Appl Biochem Biotechnol, 2021 Apr;193(4):1170-1186.
    PMID: 33200267 DOI: 10.1007/s12010-020-03469-6
    Microbial fuel cell (MFC) is a promising technology that utilizes exoelectrogens cultivated in the form of biofilm to generate power from various types of sources supplied. A metal-reducing pathway is utilized by these organisms to transfer electrons obtained from the metabolism of substrate from anaerobic respiration extracellularly. A widely established model organism that is capable of extracellular electron transfer (EET) is Shewanella oneidensis. This review highlights the strategies used in the transformation of S. oneidensis and the recent development of MFC in terms of intervention through genetic modifications. S. oneidensis was genetically engineered for several aims including the study on the underlying mechanisms of EET, and the enhancement of power generation and wastewater treating potential when used in an MFC. Through engineering S. oneidensis, genes responsible for EET are identified and strategies on enhancing the EET efficiency are studied. Overexpressing genes related to EET to enhance biofilm formation, mediator biosynthesis, and respiration appears as one of the common approaches.
    Matched MeSH terms: Electron Transport
  5. Jusoh WFA, Ballantyne L, Chan SH, Wong TW, Yeo D, Nada B, et al.
    Animals (Basel), 2021 Mar 04;11(3).
    PMID: 33806564 DOI: 10.3390/ani11030687
    The firefly genus Luciola sensu McDermott contains 282 species that are distributed across major parts of Asia, Europe, Africa, Australia, and the Pacific islands. Due to phenotypic similarities, species identification using external morphological characters can be unreliable for this group. Consequently, decades of piecemeal taxonomic treatments have resulted in numerous erroneous and contentious classifications. Furthermore, our understanding of the group's evolutionary history is limited due to the lack of a robust phylogenetic framework that has also impeded efforts to stabilize its taxonomy. Here, we constructed molecular phylogenies of Luciola and its allies based on combined mitogenomes and Cytochrome c oxidase subunit 1 (COX1) sequences including a newly sequenced mitogenome of an unidentified taxon from Singapore. Our results showed that this taxon represents a distinct and hitherto undescribed evolutionary lineage that forms a clade with L. filiformis from Japan and L. curtithorax from China. Additionally, the Singaporean lineage can be differentiated from other congeners through several external and internal diagnostic morphological characters, and is thus described herein as a new species. Our phylogeny also strongly supported the paraphyly of Luciola with regard to L. cruciata and L. owadai, which were inferred to be more closely related to the genus Aquatica as opposed to other members of Luciola sensu stricto. The genus Hotaria was inferred as a derived clade within Luciola (sister to L. italica), supporting its status as a subgenus of Luciola instead of a distinct genus. This is the first time since 1909 that a new species of luminous firefly has been discovered in Singapore, highlighting the need for continued biodiversity research, even in small, well-studied and highly developed countries, such as Singapore.
    Matched MeSH terms: Electron Transport Complex IV
  6. Supmee V, Songrak A, Suppapan J, Sangthong P
    Trop Life Sci Res, 2021 Mar;32(1):63-82.
    PMID: 33936551 DOI: 10.21315/tlsr2021.32.1.4
    Ornate threadfin bream (Nemipterus hexodon) is an economically important fishery species in Southeast Asia. In Thailand, N. hexodon decreased dramatically due to overexploitation for commercial purposes. To construct an effective sustainable management plan, genetic information is necessary. Thus, in our study, the population genetic structure and demographic history of N. hexodon were investigated using 419 bp of the mitochondrial DNA sequence in cytochrome oxidase subunit I gene (mtDNA COI). A total of 142 samples was collected from nine localities in the Gulf of Thailand (Chonburi, Samut Songkhram, Surat Thani, Nakhon Si Thammarat, Songkhla), and the Andaman Sea (Satun, Trang, Krabi, Phang Nga). Fourteen polymorphic sites defined 18 haplotypes, revealing a high haplotype diversity and low nucleotide diversity among nine localities. The analysis of molecular variance (AMOVA) analysis, pairwise F
    ST
    , and minimum spanning network result revealed that the genetic structure of N. hexodon was separated into two populations: the Gulf of Thailand and the Andaman Sea population. The genetic structure of N. hexodon can be explained by a disruption of gene flow from the geographic barrier and the Pleistocene isolation of the marine basin hypothesis. Neutrality tests, Bayesian skyline analysis, mismatch distribution, and the estimated values of population growth suggested that N. hexodon had experienced a population expansion. The genetic information would certainly help us gain insight into the population genetic structure of N. hexodon living on the coast of Thailand.
    Matched MeSH terms: Electron Transport Complex IV
  7. Alias N, Ali Umar A, Malek NAA, Liu K, Li X, Abdullah NA, et al.
    ACS Appl Mater Interfaces, 2021 Jan 20;13(2):3051-3061.
    PMID: 33410652 DOI: 10.1021/acsami.0c20137
    A deficiency in the photoelectrical dynamics at the interface due to the surface traps of the TiO2 electron transport layer (ETL) has been the critical factor for the inferiority of the power conversion efficiency (PCE) in the perovskite solar cells. Despite its excellent energy level alignment with most perovskite materials, its large density of surface defect as a result of sub lattice vacancies has been the critical hurdle for an efficient photovoltaic process in the device. Here, we report that atoms thick 2D TiS2 layer grown on the surface of a (001) faceted and single-crystalline TiO2 nanograss (NG) ETL have effectively passivated the defects, boosting the charge extractability, carrier mobility, external quantum efficiency, and the device stability. These properties allow the perovskite solar cells (PSCs) to produce a PCE as high as 18.73% with short-circuit current density (Jsc), open-circuit voltage (Voc), and fill-factor (FF) values as high as 22.04 mA/cm2, 1.13 V, and 0.752, respectively, a 3.3% improvement from the pristine TiO2-NG-based PSCs. The present approach should find an extensive application for controlling the photoelectrical dynamic deficiency in perovskite solar cells.
    Matched MeSH terms: Electron Transport
  8. Madrid RS, Sychra O, Benedick S, Edwards DP, Efeykin BD, Fandrem M, et al.
    Int J Parasitol Parasites Wildl, 2020 Dec;13:231-247.
    PMID: 33294362 DOI: 10.1016/j.ijppaw.2020.10.011
    The tropical rainforests of Sundaland are a global biodiversity hotspot increasingly threatened by human activities. While parasitic insects are an important component of the ecosystem, their diversity and parasite-host relations are poorly understood in the tropics. We investigated parasites of passerine birds, the chewing lice of the speciose genus MyrsideaWaterston, 1915 (Phthiraptera: Menoponidae) in a natural rainforest community of Malaysian Borneo. Based on morphology, we registered 10 species of lice from 14 bird species of six different host families. This indicated a high degree of host specificity and that the complexity of the system could be underestimated with the potential for cryptic lineages/species to be present. We tested the species boundaries by combining morphological, genetic and host speciation diversity. The phylogenetic relationships of lice were investigated by analyzing the partial mitochondrial cytochrome oxidase I (COI) and the nuclear elongation factor alpha (EF-1α) genes sequences of the species. This revealed a monophyletic group of Myrsidea lineages from seven hosts of the avian family Pycnonotidae, one host of Timaliidae and one host of Pellorneidae. However, species delimitation methods supported the species boundaries hypothesized by morphological studies and confirmed that four species of Myrsidea are not single host specific. Cophylogenetic analysis by both distance-based test ParaFit and event-based method Jane confirmed overall congruence between the phylogenies of Myrsidea and their hosts. In total we recorded three cospeciation events for 14 host-parasite associations. However only one host-parasite link (M. carmenae and their hosts Terpsiphone affinis and Hypothymis azurea) was significant after the multiple testing correction in ParaFit. Four new species are described: Myrsidea carmenaesp.n. ex Hypothymis azurea and Terpsiphone affinis, Myrsidea franciscaesp.n. ex Rhipidura javanica, Myrsidea ramonisp.n. ex Copsychus malabaricus stricklandii, and Myrsidea victoriaesp.n. ex. Turdinus sepiarius.
    Matched MeSH terms: Electron Transport Complex IV
  9. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, et al.
    J Hazard Mater, 2020 11 15;399:122830.
    PMID: 32937692 DOI: 10.1016/j.jhazmat.2020.122830
    Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.
    Matched MeSH terms: Electron Transport
  10. Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, et al.
    EMBO Mol Med, 2020 11 06;12(11):e12619.
    PMID: 32969598 DOI: 10.15252/emmm.202012619
    Leigh syndrome is a progressive neurodegenerative disorder, most commonly observed in paediatric mitochondrial disease, and is often associated with pathogenic variants in complex I structural subunits or assembly factors resulting in isolated respiratory chain complex I deficiency. Clinical heterogeneity has been reported, but key diagnostic findings are developmental regression, elevated lactate and characteristic neuroimaging abnormalities. Here, we describe three affected children from two unrelated families who presented with Leigh syndrome due to homozygous variants (c.346_*7del and c.173A>T p.His58Leu) in NDUFC2, encoding a complex I subunit. Biochemical and functional investigation of subjects' fibroblasts confirmed a severe defect in complex I activity, subunit expression and assembly. Lentiviral transduction of subjects' fibroblasts with wild-type NDUFC2 cDNA increased complex I assembly supporting the association of the identified NDUFC2 variants with mitochondrial pathology. Complexome profiling confirmed a loss of NDUFC2 and defective complex I assembly, revealing aberrant assembly intermediates suggestive of stalled biogenesis of the complex I holoenzyme and indicating a crucial role for NDUFC2 in the assembly of the membrane arm of complex I, particularly the ND2 module.
    Matched MeSH terms: Electron Transport Complex I/genetics; Electron Transport Complex I/metabolism
  11. Costa F, Traoré-Dubuis A, Álvarez L, Lozano AI, Ren X, Dorn A, et al.
    Int J Mol Sci, 2020 Sep 22;21(18).
    PMID: 32971806 DOI: 10.3390/ijms21186947
    Electron scattering cross sections for pyridine in the energy range 0-100 eV, which we previously measured or calculated, have been critically compiled and complemented here with new measurements of electron energy loss spectra and double differential ionization cross sections. Experimental techniques employed in this study include a linear transmission apparatus and a reaction microscope system. To fulfill the transport model requirements, theoretical data have been recalculated within our independent atom model with screening corrected additivity rule and interference effects (IAM-SCAR) method for energies above 10 eV. In addition, results from the R-matrix and Schwinger multichannel with pseudopotential methods, for energies below 15 eV and 20 eV, respectively, are presented here. The reliability of this complete data set has been evaluated by comparing the simulated energy distribution of electrons transmitted through pyridine, with that observed in an electron-gas transmission experiment under magnetic confinement conditions. In addition, our representation of the angular distribution of the inelastically scattered electrons is discussed on the basis of the present double differential cross section experimental results.
    Matched MeSH terms: Electron Transport
  12. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al.
    Parasit Vectors, 2020 Sep 15;13(1):472.
    PMID: 32933567 DOI: 10.1186/s13071-020-04345-2
    BACKGROUND: Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak.

    METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.

    RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.

    CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.

    Matched MeSH terms: Electron Transport Complex IV/genetics; Electron Transport Complex IV/metabolism
  13. Junaid HM, Batool M, Harun FW, Akhter MS, Shabbir N
    Crit Rev Anal Chem, 2020 Sep 08.
    PMID: 32897731 DOI: 10.1080/10408347.2020.1806703
    Spectacular color change during a chemical reaction is always fascinating. A variety of chemosensors including Schiff bases have been reported for selective as well as sensitive recognition of ions. This review explains the use of Schiff bases as color changing agents in the detection of anions. This magic of colors is attributed to change in the electronic structure of the system during reaction. Schiff base chemosensors are easy to synthesize, inexpensive and can be used for visual sensing of different ions. Development of Schiff base chemosensors is commonly based on the interactions between polar groups of Schiff bases and ionic species and the process of charge transfer, electron transfer and hydrogen bonding between Schiff bases and ionic species cause the color of the resultant to be changed. Therefore, designing of simple Schiff base chemosensors which are capable of selective sensing of different anions has attracted considerable interest. In particular, naked eye sensing through color change is important and useful since it allows sensing of ions through color changes without using any instrumental technique.HighlightsNaked eye sensors are of much interest these days due to their visual detection properties rather employing complex instrumentation.Optical sensors are sensitive, selective, cost effective and robust.The magic of color change is fascinating factor in detection by these sensors.The color change may be attributed by interaction between anion and Schiff base by different mechanism i.e. electron transfer, charge transfer, hydrogen bonding, ICT etc.LOD data is an evidence of their great efficiency.
    Matched MeSH terms: Electron Transport
  14. Low VL, Srisuka W, Saeung A, Tan TK, Ya'cob Z, Yeong YS, et al.
    J Med Entomol, 2020 09 07;57(5):1675-1678.
    PMID: 32333022 DOI: 10.1093/jme/tjaa081
    Previous studies suggested the presence of species complex in the so-called Simulium asakoae Takaoka & Davies (Diptera: Simuliidae) in Thailand due to its high morphological variability and genetic divergence. To investigate whether the true S. asakoae is present in Thailand, we performed a detailed morphological identification of S. asakoae and compared its DNA barcodes with the morphospecies S. asakoae from Myanmar and the typical S. asakoae from Malaysia. Phylogenetic analysis revealed the Thai materials analyzed in this study were indeed genetically similar with those from Myanmar and Malaysia, though genetic distances 0-2.27% were observed. We tentatively regard this divergence as intraspecific variation, and the automatic barcode gap discovery analysis further supports them as a single species.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  15. Ortega Pérez P, Wibbelt G, Brinkmann A, Galindo Puentes JA, Tuh FYY, Lakim MB, et al.
    Int J Parasitol Parasites Wildl, 2020 Aug;12:220-231.
    PMID: 32695576 DOI: 10.1016/j.ijppaw.2020.07.003
    Sarcocystis scandentiborneensis sp. nov. was discovered in histological sections of striated musculature of treeshrews (Tupaia minor, T. tana) from Northern Borneo. Sarcocysts were cigar-shaped, 102 μm-545 μm long, and on average 53 μm in diameter. The striated cyst wall varied in thickness (2-10 μm), depending on whether the finger-like, villous protrusions (VP) were bent. Ultrastructurally, sarcocysts were similar to wall type 12 but basal microtubules extended into VPs that tapered off with a unique U-shaped, electron-dense apical structure. In phylogenetic trees of the nuclear 18S rRNA gene, S. scandentiborneensis formed a distinct branch within a monophyletic subclade of Sarcocystis spp. with (colubrid) snake-rodent life cycle. We mapped all intraspecific (two haplotypes) and interspecific nucleotide substitutions to the secondary structure of the 18S rRNA gene: in both cases, the highest variability occurred within helices V2 and V4 but intraspecific variability mostly related to transitions, while transition/transversion ratios between S. scandentiborneensis, S. zuoi, and S. clethrionomyelaphis were skewed towards transversions. Lack of relevant sequences restricted phylogenetic analysis of the mitochondrial Cytochrome C oxidase subunit I (COI) gene to include only one species of Sarcocystis recovered from a snake host (S. pantherophisi) with which the new species formed a sister relationship. We confirm the presence of the functionally important elements of the COI barcode amino acid sequence of S. scandentiborneensis, whereby the frequency of functionally important amino acids (Alanine, Serine) was markedly different to other taxa of the Sarcocystidae. We regard S. scandentiborneensis a new species, highlighting that structurally or functionally important aspects of the 18S rRNA and COI could expand their utility for delineation of species. We also address the question why treeshrews, believed to be close to primates, carry a parasite that is genetically close to a Sarcocystis lineage preferably developing in the Rodentia as intermediate hosts.
    Matched MeSH terms: Electron Transport Complex IV
  16. Raja TN, Hu TH, Kadir KA, Mohamad DSA, Rosli N, Wong LL, et al.
    Emerg Infect Dis, 2020 08;26(8):1801-1809.
    PMID: 32687020 DOI: 10.3201/eid2608.200343
    To monitor the incidence of Plasmodium knowlesi infections and determine whether other simian malaria parasites are being transmitted to humans, we examined 1,047 blood samples from patients with malaria at Kapit Hospital in Kapit, Malaysia, during June 24, 2013-December 31, 2017. Using nested PCR assays, we found 845 (80.6%) patients had either P. knowlesi monoinfection (n = 815) or co-infection with other Plasmodium species (n = 30). We noted the annual number of these zoonotic infections increased greatly in 2017 (n = 284). We identified 6 patients, 17-65 years of age, with P. cynomolgi and P. knowlesi co-infections, confirmed by phylogenetic analyses of the Plasmodium cytochrome c oxidase subunit 1 gene sequences. P. knowlesi continues to be a public health concern in the Kapit Division of Sarawak, Malaysian Borneo. In addition, another simian malaria parasite, P. cynomolgi, also is an emerging cause of malaria in humans.
    Matched MeSH terms: Electron Transport Complex IV
  17. Syafruddin D, Lestari YE, Permana DH, Asih PBS, St Laurent B, Zubaidah S, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008385.
    PMID: 32614914 DOI: 10.1371/journal.pntd.0008385
    Anopheles sundaicus s.l. is an important malaria vector primarily found in coastal landscapes of western and central Indonesia. The species complex has a wide geographical distribution in South and Southeast Asia and exhibits ecological and behavioural variability over its range. Studies on understanding the distribution of different members in the complex and their bionomics related to malaria transmission might be important guiding more effective vector intervention strategies. Female An. sundaicus s.l. were collected from seven provinces, 12 locations in Indonesia representing Sumatra: North Sumatra, Bangka-Belitung, South Lampung, and Bengkulu; in Java: West Java; and the Lesser Sunda Islands: West Nusa Tenggara and East Nusa Tenggara provinces. Sequencing of ribosomal DNA ITS2 gene fragments and two mitochondrial DNA gene markers, COI and cytb, enabled molecular identification of morphologically indistinguishable members of the complex. Findings allowed inference on the distribution of the An. sundaicus s.l. present in Indonesia and further illustrate the phylogenetic relationships of An. epiroticus within the complex. A total of 370 An. sundaicus s.l specimens were analysed for the ITS2 fragment. The ITS2 sequence alignment revealed two consistent species-specific point mutations, a T>C transition at base 479 and a G>T transversion at base 538 that differentiated five haplotypes: TG, CG, TT, CT, and TY. The TG haplotype matched published An. epiroticus-indicative sequences from Thailand, Vietnam and peninsular Malaysia. The previously described insertion event (base 603) was observed in all identified specimens. Analysis of the COI and cytb genes revealed no consistent nucleotide variations that could definitively distinguish An. epiroticus from other members in the Sundaicus Complex. The findings indicate and support the existence of An. epiroticus in North Sumatra and Bangka-Belitung archipelago. Further studies are recommended to determine the full distributional extent of the Sundaicus complex in Indonesia and investigate the role of these species in malaria transmission.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  18. Shahiduzzaman M, Fukaya S, Muslih EY, Wang L, Nakano M, Akhtaruzzaman M, et al.
    Materials (Basel), 2020 May 11;13(9).
    PMID: 32403454 DOI: 10.3390/ma13092207
    Perovskite solar cells (PSCs) have appeared as a promising design for next-generation thin-film photovoltaics because of their cost-efficient fabrication processes and excellent optoelectronic properties. However, PSCs containing a metal oxide compact layer (CL) suffer from poor long-term stability and performance. The quality of the underlying substrate strongly influences the growth of the perovskite layer. In turn, the perovskite film quality directly affects the efficiency and stability of the resultant PSCs. Thus, substrate modification with metal oxide CLs to produce highly efficient and stable PSCs has drawn attention. In this review, metal oxide-based electron transport layers (ETLs) used in PSCs and their systemic modification are reviewed. The roles of ETLs in the design and fabrication of efficient and stable PSCs are also discussed. This review will guide the further development of perovskite films with larger grains, higher crystallinity, and more homogeneous morphology, which correlate to higher stable PSC performance. The challenges and future research directions for PSCs containing compact ETLs are also described with the goal of improving their sustainability to reach new heights of clean energy production.
    Matched MeSH terms: Electron Transport
  19. Saeung A, Srisuka W, Aupalee K, Fukuda M, Otsuka Y, Taai K, et al.
    Acta Trop, 2020 Apr;204:105344.
    PMID: 31954685 DOI: 10.1016/j.actatropica.2020.105344
    Zoonotic onchocerciasis is a human infection caused by Onchocerca species of animal origins and transmitted by black fly vectors. The reported incidence of this disease has increased throughout the world. This study aims to clarify the vectorial roles of black fly species in zoonotic filarial transmission in Tak province, western Thailand. The integrated approach of morphological and DNA sequence-based analyses was used to identify species of both wild-caught female black flies and infective filarial larvae found in the infected black flies. All of 494 female black flies captured were identified as Simulium nigrogilvum, through scanning electron microscopy (SEM) and DNA sequence analyses based on the cytochrome c oxidase subunit I (COI) and subunit II (COII), and the fast-evolving nuclear elongation complex protein 1 (ECP1) genes. Four females of S. nigrogilvum harbored one to three third-stage larvae (infective larvae) in their thoraces, with an infection rate of 0.81% (4/494). All infective larvae were similar in morphology and size to one another, being identified as Onchocerca species type I (= O. sp. type A), a bovine filaria, originally reported from Japan, and also as O. sp. found in S. nodosum in Thailand, based on their body lengths and widths being 1,068-1,346 µm long by 25-28 µm wide, and morphological characters. Comparisons of cytochrome c oxidase subunit I (COI) and 12S rRNA sequences of mitochondrial DNA (mtDNA) and phylogenetic analyses with those of previous reports strongly supported that all larvae were O. sp. type I. This report is the first indicating the presence of O. sp. type I in Thailand and its vector being S. nigrogilvum.
    Matched MeSH terms: Electron Transport Complex IV
  20. Md Naim D, Kamal NZM, Mahboob S
    Saudi J Biol Sci, 2020 Mar;27(3):953-967.
    PMID: 32127775 DOI: 10.1016/j.sjbs.2020.01.021
    The population genetics study is crucial as it helps in understanding the epidemiological aspects of dengue and help improving a vector control measures. This research aims to investigate the population genetics structure of two common species of Aedes mosquitoes in Penang; Aedes aegypti and Aedes albopictus using Cytochrome Oxidase I (COI) mitochondrial DNA (mtDNA) marker. Molecular investigations were derived from 440 bp and 418 bp mtDNA COI on 125 and 334 larvae of Aedes aegypti and Aedes albopictus respectively, from 32 locations in Penang. All samples were employed in the BLASTn for species identification. The haplotype diversity, nucleotide diversity, neutrality test and mismatch distribution analysis were conducted in DnaSP version 5.10.1. AMOVA analysis was conducted in ARLEQUIN version 3.5 and the phylogenetic reconstructions based on maximum likelihood (ML) and neighbor-joining (NJ) methods were implemented in MEGA X. The relationships among haplotypes were further tested by creating a minimum spanning tree using Network version 4.6.1. All samples were genetically identified and clustered into six distinct species. Among the species, Ae. albopictus was the most abundant (67.2%), followed by Ae. aegypti (25.2%) and the rest were counted for Culex sp. and Toxorhynchites sp. Both Ae. aegypti and Ae. albopictus show low nucleotide diversity (π) and high haplotype diversity (h), while the neutrality test shows a negative value in most of the population for both species. There are a total of 39 and 64 haplotypes recorded for Ae. aegypti and Ae. albopictus respectively. AMOVA analysis revealed that most of the variation occurred within population for both species. Mismatch distribution analysis showed bimodal characteristic of population differentiation for Ae. aegypti but Ae. albopictus showed unimodal characteristics of population differentiation. Genetic distance based on Tamura-Nei parameter showed low genetic divergent within population and high genetic divergent among population for both species. The maximum likelihood tree showed no obvious pattern of population genetic structure for both Ae. aegypti and Ae. albopictus from Penang and a moderate to high bootstrap values has supported this conclusion. The minimum spanning network for Ae. aegypti and Ae. albopictus showed five and three dominant haplotypes respectively, which indicates a mixture of haplotypes from the regions analysed. This study revealed that there is no population genetic structure exhibited by both Ae. aegypti and Ae. albopictus in Penang. Mutation has occurred rapidly in both species and this will be challenging in controlling the populations. However, further analysis needed to confirm this statement.
    Matched MeSH terms: Electron Transport Complex IV
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links