Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Ikonomopoulou MP, Olszowy H, Francis R, Ibrahim K, Whittier J
    Sci Total Environ, 2013 Apr 15;450-451:301-6.
    PMID: 23500829 DOI: 10.1016/j.scitotenv.2013.02.031
    A variety of trace metals were measured in the egg contents of three clutches of Chelonia mydas collected from Kuala Terengganu state in Peninsular Malaysia. We quantified Mn, Cu, Zn, Se (essential trace metals) and As (anthropogenic pollutant) at several developmental stages obtained by incubating eggs at two different temperatures (27 °C and 31 °C). The incubation temperatures were chosen because they produce predominantly male or predominantly female hatchlings, respectively. The eggs were removed from the sand and washed before being placed in incubators, to ensure that the only possible source of the detected metals was maternal transfer. Other metals: Mo, Co, Ni, Cd, Sn, Sb, Hg, Tl and Pb (all non-essential metals) were detected at concentrations below the lower limit of quantitation (LLOQ). Trace metal concentrations, particularly [Zn], increased during development, other metals (Cu, As, Se and Cr) accumulated to a lesser degree than zinc but no significant differences were observed between the incubation temperatures at any stage of incubation. To date, only a few studies on trace metals in turtle embryos and hatchlings have been reported; this study will provide basic knowledge on the accumulation of trace metals during development at two different incubation temperatures.
    Matched MeSH terms: Embryo, Nonmammalian/metabolism*
  2. Wen Jun L, Pit Foong C, Abd Hamid R
    Biomed Pharmacother, 2019 Oct;118:109221.
    PMID: 31545225 DOI: 10.1016/j.biopha.2019.109221
    Ardisia crispa Thunb. A. DC. (Primulaceae) has been used extensively as folk-lore medicine in South East Asia including China and Japan to treat various inflammatory related diseases. Ardisia crispa root hexane fraction (ACRH) has been thoroughly studied by our group and it has been shown to exhibit anti-inflammatory, anti-hyperalgesic, anti-arthritic, anti-ulcer, chemoprevention and suppression against inflammation-induced angiogenesis in various animal model. Nevertheless, its effect against human endothelial cells in vitro has not been reported yet. Hence, the aim of the study is to investigate the potential antiangiogenic property of ACRH in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo model. ACRH was separated from the crude ethanolic extract of the plant's root in prior to experimental studies. MTT assay revealed that ACRH exerted a concentration-dependent antiproliferative effect on HUVEC with the IC50 of 2.49 ± 0.04 μg/mL. At higher concentration (10 μg/mL), apoptosis was induced without affecting the cell cycle distribution. Angiogenic properties including migration, invasion and differentiation of HUVECs, evaluated via wound healing, trans-well invasion and tube formation assay respectively, were significantly suppressed by ACRH in a concentration-dependent manner. Noteworthily, significant antiangiogenic effects were observed even at the lowest concentration used (0.1 μg/mL). Expression of proMMP-2, vascular endothelial growth factor (VEGF)-C, VEGF-D, Angiopoietin-2, fibroblast growth factor (FGF)-1, FGF-2, Follistatin, and hepatocyte growth factor (HGF) were significantly reduced in various degrees by ACRH. The ISV formation in zebrafish embryo was significantly suppressed by ACRH at the concentration of 5 μg/mL. These findings revealed the potential of ACRH as antiangiogenic agent by suppressing multiple proangiogenic proteins. Thus, it can be further verified via the transcription of these proteins from their respective DNA, in elucidating their exact pathways.
    Matched MeSH terms: Embryo, Nonmammalian/metabolism*
  3. Dzaki N, Azzam G
    PLoS One, 2018;13(3):e0194664.
    PMID: 29554153 DOI: 10.1371/journal.pone.0194664
    Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.
    Matched MeSH terms: Embryo, Nonmammalian
  4. Wijesinghe WA, Kim EA, Kang MC, Lee WW, Lee HS, Vairappan CS, et al.
    Environ Toxicol Pharmacol, 2014 Jan;37(1):110-7.
    PMID: 24317194 DOI: 10.1016/j.etap.2013.11.006
    5β-Hydroxypalisadin B, a halogenated secondary metabolite isolated from red seaweed Laurencia snackeyi was evaluated for its anti-inflammatory activity in lipopolysaccharide (LPS)-induced zebrafish embryo. Preliminary studies suggested the effective concentrations of the compound as 0.25, 0.5, 1 μg/mL for further in vivo experiments. 5β-Hydroxypalisadin B, exhibited profound protective effect in the zebrafish embryo as confirmed by survival rate, heart beat rate, and yolk sac edema size. The compound acts as an effective agent against reactive oxygen species (ROS) formation induced by LPS and tail cut. Moreover, 5β-hydroxypalisadin B effectively inhibited the LPS-induced nitric oxide (NO) production in zebrafish embryo. All the tested protective effects of 5β-hydroxypalisadin B were comparable to the well-known anti-inflammatory agent dexamethasone. According to the results obtained, 5β-hydroxypalisadin B isolated from red seaweed L. snackeyi could be considered as an effective anti-inflammatory agent which might be further developed as a functional ingredient.
    Matched MeSH terms: Embryo, Nonmammalian/drug effects; Embryo, Nonmammalian/metabolism
  5. Dzaki N, Wahab W, Azlan A, Azzam G
    Biochem Biophys Res Commun, 2018 10 20;505(1):106-112.
    PMID: 30241946 DOI: 10.1016/j.bbrc.2018.09.074
    CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.
    Matched MeSH terms: Embryo, Nonmammalian/embryology; Embryo, Nonmammalian/metabolism
  6. Choo SW, Beh CY, Russell S, White R
    ScientificWorldJournal, 2014;2014:191535.
    PMID: 25389534 DOI: 10.1155/2014/191535
    In Drosophila, protein trap strategies provide powerful approaches for the generation of tagged proteins expressed under endogenous control. Here, we describe expression and functional analysis to evaluate new Ubx and hth protein trap lines generated by the Cambridge Protein Trap project. Both protein traps exhibit spatial and temporal expression patterns consistent with the reported endogenous pattern in the embryo. In imaginal discs, Ubx-YFP is expressed throughout the haltere and 3rd leg imaginal discs, while Hth-YFP is expressed in the proximal regions of haltere and wing discs but not in the pouch region. The Ubx (CPTI000601) line is semilethal as a homozygote. No T3/A1 to T2 transformations were observed in the embryonic cuticle or the developing midgut. The homozygous survivors, however, exhibit a weak haltere phenotype with a few wing-like marginal bristles on the haltere capitellum. Although hth (CPTI000378) is completely lethal as a homozygote, the hth (CPTI000378) /hth (C1) genotype is viable. Using a hth deletion (Df(3R)BSC479) we show that hth (CPTI000378) /Df(3R)BSC479 adults are phenotypically normal. No transformations were observed in hth (CPTI000378), hth (CPTI000378) /hth (C1), or hth (CPTI000378) /Df(3R)BSC479 embryonic cuticles. We have successfully characterised the Ubx-YFP and Hth-YFP protein trap lines demonstrating that the tagged proteins show appropriate expression patterns and produce at least partially functional proteins.
    Matched MeSH terms: Embryo, Nonmammalian
  7. Kitahashi T, Ogawa S, Parhar IS
    Endocrinology, 2009 Feb;150(2):821-31.
    PMID: 18927220 DOI: 10.1210/en.2008-0940
    Newly discovered kisspeptin (metastin), encoded by the Kiss1/KISS1 gene, is considered as a major gatekeeper of puberty through the regulation of GnRH. In the present study, we cloned a novel kisspeptin gene (kiss2) in the zebrafish Danio rerio and the medaka Oryzias latipes, which encodes a sequence of 125 and 115 amino acids, respectively, and its core sequence (FNLNPFGLRF, F-F form) is different from the previously characterized kiss1 (YNLNSFGLRY, Y-Y form). Our in silico data mining shows kiss1 and kiss2 are highly conserved across nonmammalian vertebrate species, and we have identified two putative kisspeptins in the platypus and three forms in Xenopus. In the brain of zebrafish and medaka, in situ hybridization and laser capture microdissection coupled with real-time PCR showed kiss1 mRNA expression in the ventromedial habenula and the periventricular hypothalamic nucleus. The kiss2 mRNA expression was observed in the posterior tuberal nucleus and the periventricular hypothalamic nucleus. Quantitative real-time PCR analysis during zebrafish development showed a significant increase in zebrafish kiss1, kiss2 (P < 0.002), gnrh2, and gnrh3 (P < 0.001) mRNA levels at the start of the pubertal phase and remained high in adulthood. In sexually mature female zebrafish, Kiss2 but not Kiss1 administration significantly increased FSH-beta (2.7-fold, P < 0.05) and LH-beta (8-fold, P < 0.01) mRNA levels in the pituitary. These results suggest that the habenular Kiss1 and the hypothalamic Kiss2 are potential regulators of reproduction including puberty and that Kiss2 is the predominant regulator of gonadotropin synthesis in fish.
    Matched MeSH terms: Embryo, Nonmammalian
  8. Fakhlaei R, Selamat J, Abdull Razis AF, Sukor R, Ahmad S, Khatib A, et al.
    Chemosphere, 2024 May;356:141736.
    PMID: 38554873 DOI: 10.1016/j.chemosphere.2024.141736
    Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.
    Matched MeSH terms: Embryo, Nonmammalian/drug effects
  9. Ismail A, Yusof S
    Mar Pollut Bull, 2011;63(5-12):347-9.
    PMID: 21377175 DOI: 10.1016/j.marpolbul.2011.02.014
    Several organisms have been used as indicators, bio-monitoring agents or test organisms in ecotoxicological studies. A close relative of the well established Japanese medaka, the Java medaka (Oryzias javanicus), has the potential to be a test organism. The fish is native to the estuaries of the Malaysian Peninsula, Thailand, Indonesia and Singapore. In this study, newly fertilised eggs were exposed to different concentrations of Cd and Hg. Observations were done on the development of the embryos. Exposure to low levels of Cd and Hg (0.01-0.05 ppm) resulted in several developmental disorders that led to death. Exposure to ≥1.0 ppm Cd resulted in immediate developmental arrest. The embryos of Java medaka showed tolerance to a certain extent when exposed to ≥1.0 ppm Hg compared to Cd. Based on the sensitivity of the embryos, Java medaka is a suitable test organism for ecotoxicology in the tropical region.
    Matched MeSH terms: Embryo, Nonmammalian/abnormalities; Embryo, Nonmammalian/drug effects
  10. Fukui M, Fujita M, Tomizuka S, Mashimo Y, Shimizu S, Lee CY, et al.
    Arthropod Struct Dev, 2018 Jan;47(1):64-73.
    PMID: 29109050 DOI: 10.1016/j.asd.2017.11.001
    The egg structure and outline of the embryonic development of Metallyticus splendidus of one of the basal Mantodea representatives, Metallyticidae, were described in the present study. The results obtained were compared with those from the previous studies, to reconstruct and discuss the groundplan of Mantodea and Dictyoptera. In M. splendidus, the egg is spheroidal, it has a convex ventral side at the center in which numerous micropyles are grouped, and it possesses a conspicuous hatching line in its anterior half. These are the groundplan features of mantodean eggs and the "grouped micropyles in the ventral side of the egg" are regarded as an apomorphic groundplan feature of Dictyoptera. A small circular embryo is formed by a simple concentration of blastoderm cells, which then undergoes embryogenesis of the typical short germ band type. Blastokinesis is of the "non-reversion type" and the embryo keeps its original superficial position and original orientation throughout embryonic development. During the middle stages of development, the embryo undergoes rotation around the egg's anteroposterior axis. These features are a part of the groundplan of Mantodea. It is uncertain whether sharing of the "non-reversion type" of blastokinesis by Mantodea and blaberoidean Blattodea can be regarded as homology or homoplasy.
    Matched MeSH terms: Embryo, Nonmammalian/embryology*
  11. Tworzydlo W, Kisiel E, Bilinski SM
    PLoS One, 2013;8(5):e64087.
    PMID: 23667700 DOI: 10.1371/journal.pone.0064087
    Three main reproductive strategies have been described among insects: most common oviparity, ovoviviparity and viviparity. In the latter strategy, the embryonic development takes place within the body of the mother which provides gas exchange and nutrients for embryos. Here we present the results of histological and EM analyses of the female reproductive system of the viviparous earwig, Arixenia esau, focusing on all the modifications related to the viviparity. We show that in the studied species the embryonic development consists of two "physiological phases" that take place in two clearly disparate compartments, i.e. the terminal ovarian follicle and the uterus. In both compartments the embryos are associated with synthetically active epithelial cells. We suggest that these cells are involved in the nourishment of the embryo. Our results indicate that viviparity in arixeniids is more complex than previously considered. We propose the new term "pseudoplacento-uterotrophic viviparity" for this unique two-phase reproductive strategy.
    Matched MeSH terms: Embryo, Nonmammalian/embryology; Embryo, Nonmammalian/ultrastructure
  12. Hassan A, Okomoda VT, Sanusi FAB
    Zygote, 2018 Oct;26(5):343-349.
    PMID: 30296962 DOI: 10.1017/S0967199418000187
    SummaryThis study investigated the breeding parameters and embryogenic development of diploid and heat shock-induced triploid eggs of Anabas testudineus (Bloch, 1792). To this effect, broodstocks of A. testudineus were induced to spawn using the Ovaprim® hormone. After fertilization, the eggs were divided into two groups and one portion heat shocked at 41°C (for 3 min), at approximately 4 min after fertilization. Results of fertilization, hatchability, as well as the sequence and timing of embryogenic development were collated from three breeding trials. Fertilization percentages were similar in both treatments (≈90%) while hatchability was higher in the diploid eggs (79.56%) than the triploid induced eggs (50.04%). Both treatments had the same sequence of embryogenetic stages; however, the timing of development was significantly delayed in the triploids (i.e. beyond the 2-cell stages) as compared with the observations in the control group (diploid eggs). Consequently, hatching time was 5 h faster in the diploid eggs [i.e. 18 hours post fertilization (hpf)] compared with the triploid induced eggs (23 hpf). The most critical stage of embryonic development in which mass mortality occurred in the different treatments was the somite stage. The status of triploid hatchlings was affirmed using erythrocyte morphology in 2-month-old fingerlings.
    Matched MeSH terms: Embryo, Nonmammalian/cytology
  13. Guru A, Lite C, Freddy AJ, Issac PK, Pasupuleti M, Saraswathi NT, et al.
    Dev Comp Immunol, 2021 Jan;114:103863.
    PMID: 32918928 DOI: 10.1016/j.dci.2020.103863
    Antioxidant peptides are naturally present in food, especially in fishes, and are considered to contain rich source of various bioactive compounds that are structurally heterogeneous. This study aims to identify and characterize the antioxidant property of the WL15 peptide, derived from Cysteine and glycine-rich protein 2 (CSRP2) identified from the transcriptome of a freshwater food fish, Channa striatus. C. striatus is already studied to contain high levels of amino acids and fatty acids, besides traditionally known for its pharmacological benefits in the Southeast Asian region. In our study, in vitro analysis of WL15 peptide exhibited strong free radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), superoxide anion radical and hydrogen peroxide (H2O2) scavenging assay. Further, to evaluate the cytotoxicity and dose-response, the Human dermal fibroblast (HDF) cells were used. Results showed that the treatment of HDF cells with varying concentrations (10, 20, 30, 40 and 50 μM) of WL15 peptide was not cytotoxic. However, the treatment concentrations showed enhanced antioxidant properties by significantly inhibiting the levels of free radicals. For in vivo assessment, we have used zebrafish larvae for evaluating the developmental toxicity and for determining the antioxidant property of the WL15 peptide. Zebrafish embryos were treated with the WL15 peptide from 4 h of post-fertilization (hpf) to 96 hpf covering the embryo-larval developmental period. At the end of the exposure period, the larvae were exposed to H2O2 (1 mM) for inducing generic oxidative stress. The exposure of WL15 peptide during the embryo-larval period showed no developmental toxicity even in higher concentrations of the peptide. Besides, the WL15 peptide considerably decreased the intracellular reactive oxygen species (ROS) levels induced by H2O2 exposure. WL15 peptide also inhibited the H2O2-induced caspase 3-dependent apoptotic response in zebrafish larvae was observed using the whole-mount immunofluorescence staining. Overall results from our study showed that the pre-treatment of WL15 (50 μM) in the H2O2-exposed zebrafish larvae, attenuated the expression of activated caspase 3 expressions, reduced Malondialdehyde (MDA) levels, and enhanced antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT). The gene expression of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxide (GPx) and γ-glutamyl cysteine synthetase (GCS) was found to be upregulated. In conclusion, it can be conceived that pre-treatment with WL15 could mitigate H2O2-induced oxidative injury by elevating the activity and expression of antioxidant enzymes, thereby decreasing MDA levels and cellular apoptosis by enhancing the antioxidant response, demonstrated by the in vitro and in vivo experiments.
    Matched MeSH terms: Embryo, Nonmammalian
  14. Martin TE, Ton R, Niklison A
    Ecol Lett, 2013 Jun;16(6):738-45.
    PMID: 23473270 DOI: 10.1111/ele.12103
    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.
    Matched MeSH terms: Embryo, Nonmammalian/metabolism
  15. Martin TE, Oteyza JC, Mitchell AE, Potticary AL, Lloyd P
    Am Nat, 2015 Mar;185(3):380-9.
    PMID: 25674692 DOI: 10.1086/679612
    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.
    Matched MeSH terms: Embryo, Nonmammalian/physiology
  16. Mohd Sharifuddin M, Siti Azizah MN
    Cryobiology, 2014 Aug;69(1):1-9.
    PMID: 24726775 DOI: 10.1016/j.cryobiol.2014.04.001
    This paper reports the findings of the ongoing studies on cryopreservation of the snakehead, Channa striata embryos. The specific objective of this study was to collect data on the sensitivity of C. striata embryo hatching rate to low temperatures at two different developmental stages in the presence of four different cryoprotectants. Embryos at morula and heartbeat stages were selected and incubated in 1M dimethyl sulfoxide (Me2SO), 1M ethylene glycol (EG), 1M methanol (MeOH) and 0.1M sucrose solutions at different temperatures for a period of time. Embryos were kept at 24 °C (control), 15 °C, 4 °C and -2 °C for 5 min, 1h and 3h. Following these treatments, the embryos were then transferred into a 24 °C water bath until hatch to evaluate the hatching rate. The results showed that there was a significant decrease of hatching rate in both developmental stages following exposure to 4 °C and -2 °C at 1h and 3h exposure in each treatment. Heartbeat stage was more tolerant against chilling at -2 °C for 3h exposure in Me2SO followed by MeOH, sucrose and EG. Further studies will be conducted to find the best method to preserve embryos for long term storage.
    Matched MeSH terms: Embryo, Nonmammalian
  17. Reijnders MRF, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, et al.
    Am J Hum Genet, 2017 Sep 07;101(3):466-477.
    PMID: 28886345 DOI: 10.1016/j.ajhg.2017.08.007
    RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration.
    Matched MeSH terms: Embryo, Nonmammalian/metabolism; Embryo, Nonmammalian/pathology
  18. El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R, Choo SW, et al.
    PLoS One, 2017;12(3):e0172725.
    PMID: 28282436 DOI: 10.1371/journal.pone.0172725
    It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome.
    Matched MeSH terms: Embryo, Nonmammalian/metabolism
  19. Lewis RS, Noor SM, Fraser FW, Sertori R, Liongue C, Ward AC
    J Immunol, 2014 Jun 15;192(12):5739-48.
    PMID: 24835394 DOI: 10.4049/jimmunol.1301376
    Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.
    Matched MeSH terms: Embryo, Nonmammalian/immunology*
  20. Tee HS, Saad AR, Lee CY
    J Econ Entomol, 2010 Oct;103(5):1770-4.
    PMID: 21061978
    The objective of this study was to evaluate the suitability of heat- and freeze-killed oothecae of Periplaneta americana (L.) (Dictyoptera: Blattidae) as hosts for parasitoid Aprostocetus hagenowii (Ratzeburg) (Hymenoptera: Eulophidae). The oothecae were subjected to -20, 45, 48, 50, and 55 degrees C at different exposure times (15, 30, 45, and 60 min). The effects of heat- and freeze-killed oothecae on several biological parameters (e.g., parasitism and emergence rates, developmental times, progeny number, and sex ratio) ofA. hagenowii were determined. Embryonic development of 2-d-old oothecae was terminated by either freezing at -20 degrees C or heating at > or = 48 degrees C for > or =30 min. A. hagenowii parasitized live oothecae as well as both heat- and freeze-killed oothecae. Percentage parasitism, emergence rates, and developmental times ofA. hagenowii in both heat- and freeze-killed oothecae were not significantly different from those of the live oothecae. Both heating and freezing did not influence progeny number (male and female) and sex ratio of A. hagenowii emerged from killed oothecae.
    Matched MeSH terms: Embryo, Nonmammalian
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links