Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Murugan D, Lau YS, Lau CW, Lau WC, Mustafa MR, Huang Y
    PLoS One, 2015;10(12):e0145413.
    PMID: 26709511 DOI: 10.1371/journal.pone.0145413
    Angiotensin 1-7 (Ang 1-7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1-7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1-7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1-7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1-7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1-7. In addition, Ang 1-7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1-7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  2. Greenwood M, Greenwood MP, Paton JF, Murphy D
    PLoS One, 2015;10(4):e0124956.
    PMID: 25915053 DOI: 10.1371/journal.pone.0124956
    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON.
    Matched MeSH terms: Endoplasmic Reticulum Stress*
  3. Mohd Sairazi NS, Sirajudeen KN, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA
    PMID: 26793262 DOI: 10.1155/2015/972623
    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  4. Tan HK, Muhammad TST, Tan ML
    Toxicol Appl Pharmacol, 2016 06 01;300:55-69.
    PMID: 27049118 DOI: 10.1016/j.taap.2016.03.017
    14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology*
  5. Tan HK, Tengku Muhammad TS, Tan ML
    Data Brief, 2016 Jun;7:1506-10.
    PMID: 27182548 DOI: 10.1016/j.dib.2016.04.046
    The data presented in this article are related to the research article entitled "14-deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reticulum stress-mediated autophagy in T-47D breast carcinoma cells", which the mechanistic toxicology properties of 14-deoxy-11,12-didehydroandrographolide (14-DDA) were investigated (Tan et al., 2016 [1]). This article describes the derivation of cytotoxic parameters of 14-DDA, cell viability data after double transfection and DDIT3 silencing in T-47D cells.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  6. Merlot AM, Shafie NH, Yu Y, Richardson V, Jansson PJ, Sahni S, et al.
    Biochem Pharmacol, 2016 06 01;109:27-47.
    PMID: 27059255 DOI: 10.1016/j.bcp.2016.04.001
    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*; Endoplasmic Reticulum Stress/genetics
  7. AlMatar M, Makky EA
    3 Biotech, 2016 Jun;6(1):4.
    PMID: 28330073 DOI: 10.1007/s13205-015-0323-4
    Fungi are important natural product sources that have enormous potential for the production of novel compounds for use in pharmacology, agricultural applications and industry. Compared with other natural sources such as plants, fungi are highly diverse but understudied. However, research on Cladosporium cladosporioides revealed the existence of bioactive products such as p-methylbenzoic acid, ergosterol peroxide (EP) and calphostin C as well as enzymes including pectin methylesterase (PME), polygalacturonase (PG) and chlorpyrifos hydrolase. p-Methylbenzoic acid has ability to synthesise 1,5-benzodiazepine and its derivatives, polyethylene terephthalate and eicosapentaenoic acid. EP has anticancer, antiangiogenic, antibacterial, anti-oxidative and immunosuppressive properties. Calphostin C inhibits protein kinase C (PKC) by inactivating both PKC-epsilon and PKC-alpha. In addition, calphostin C stimulates apoptosis in WEHI-231 cells and vascular smooth muscle cells. Based on the stimulation of endoplasmic reticulum stress in some types of cancer, calphostin C has also been evaluated as a potential photodynamic therapeutic agent. Methylesterase (PME) and PG have garnered attention because of their usage in the food processing industry and significant physiological function in plants. Chlorpyrifos, a human, animal and plant toxin, can be degraded and eliminated by chlorpyrifos hydrolase.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  8. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  9. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al.
    Cell Death Dis, 2016 12 08;7(12):e2513.
    PMID: 27929536 DOI: 10.1038/cddis.2016.374
    Hyperhomocysteinemia (HHcy) is a well-known risk factor for stroke; however, its underlying molecular mechanism remains unclear. Using both mouse and cell culture models, we have provided evidence that impairment of autophagy has a central role in HHcy-induced cellular injury in the mouse brain. We observed accumulation of LC3B-II and p62 that was associated with increased MTOR signaling in human and mouse primary astrocyte cell cultures as well as a diet-induced mouse model of HHcy, HHcy decreased lysosomal membrane protein LAMP2, vacuolar ATPase (ATP6V0A2), and protease cathepsin D, suggesting that lysosomal dysfunction also contributed to the autophagic defect. Moreover, HHcy increased unfolded protein response. Interestingly, Vitamin B supplementation restored autophagic flux, alleviated ER stress, and reversed lysosomal dysfunction due to HHCy. Furthermore, the autophagy inducer, rapamycin was able to relieve ER stress and reverse lysosomal dysfunction caused by HHcy in vitro. Inhibition of autophagy by HHcy exacerbated cellular injury during oxygen and glucose deprivation and reperfusion (OGD/R), and oxidative stress. These effects were prevented by Vitamin B co-treatment, suggesting that it may be helpful in relieving detrimental effects of HHcy in ischemia/reperfusion or oxidative stress. Collectively, these findings show that Vitamin B therapy can reverse defects in cellular autophagy and ER stress due to HHcy; and thus may be a potential treatment to reduce ischemic damage caused by stroke in patients with HHcy.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  10. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects
  11. Zhang D, Gao C, Li R, Zhang L, Tian J
    Arch Pharm Res, 2017 May;40(5):579-591.
    PMID: 28211011 DOI: 10.1007/s12272-017-0899-9
    2α,3α,24-Thrihydroxyurs-12-en-28-oicacid (TEOA), a pentacyclic triterpenoid, isolated from the roots of Actinidia eriantha, exhibits significant cytotoxicity against SW620, BGC-823, HepG-2, A549 and PC-3 cancer cells. In this study, we investigated the underlying molecular mechanism of the anticancer activity of TEOA in SW620 cells. We demonstrated that TEOA induced apoptosis through cleavage of caspase-9 and PARP in SW620 cells. In addition, evidence of TEOA-mediated autophagy included the induction of autophagolysosomes and activation of autophagic markers LC-3B and p62. Further analysis illustrated that TEOA promoted the phosphorylation of PERK and elF2α, followed by up-regulation of the downstream protein CHOP, suggesting the involvement of PERK/eIF2α/CHOP pathway and ER stress in TEOA-induced autophagy in SW620 cells. Meanwhile, TEOA-mediated PINK1, Parkin, ubiquitin and p62 activation revealed that TEOA induced specific autophagy-mitophagy in SW620 cells. Additionally, an antioxidant NAC attenuated the TEOA-induced mitophagy, indicating that TEOA triggers mitophagy via a ROS-dependent pathway. Collectively, our findings revealed a novel cellular mechanism of TEOA in the colon cancer cell line SW620, thus providing a molecular basis for developing TEOA into an anti-tumor candidate.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  12. De Blasio MJ, Ramalingam A, Cao AH, Prakoso D, Ye JM, Pickering R, et al.
    Eur J Pharmacol, 2017 Jul 15;807:12-20.
    PMID: 28438648 DOI: 10.1016/j.ejphar.2017.04.026
    Endoplasmic reticulum (ER) stress contributes to progression of diabetic nephropathy, which promotes end-stage renal failure in diabetic patients. This study was undertaken to investigate the actions of tempol and ramipril, pharmacological agents that target the consequences of NADPH oxidase, on diabetic nephropathy in a rat model of type 1 diabetes, with an emphasis on markers of ER stress. Male Sprague-Dawley rats were injected intravenously with a single bolus of streptozotocin (55mg/kg) to induce type 1 diabetes. An additional age-matched group of rats was administered with citrate vehicle as controls. After 4 weeks of untreated diabetes, rats received tempol (1.5mM/kg/day subcutaneously, n=8), ramipril (1mg/kg/day in drinking water, n=8) or remained untreated for an additional 4 weeks (n=7). After 8 weeks of diabetes in total, kidneys were collected for histological analysis, gene expression and protein abundance. Tempol and ramipril blunted diabetes-induced upregulation of NADPH oxidase isoforms (Nox4, Nox2, p47phox), accompanied by an amelioration of diabetes-induced glomerular injury (podocin, nephrin, Kim-1), tubulo-interstitial fibrosis (TGFβ1, TGFβ-R2, pSMAD3, α-SMA) and pro-inflammatory cytokines (TNFα, MCP-1, ANX-A1, FPR2) expression. In addition, the diabetes-induced renal ER stress, evidenced by increased expression of GRP-78 chaperone and stress-associated markers ATF4, TRB3, as well as XBP1s, phospho-p38 mitogen-activated protein kinase (MAPK) and 3-nitrotyrosination, were all attenuated by tempol and ramipril. These observations suggest that antioxidant approaches that blunt NADPH upregulation may attenuate diabetic nephropathy, at least in part by negatively regulating ER stress and inflammation, and hence ameliorating kidney damage.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  13. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat Genet, 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
    Matched MeSH terms: Endoplasmic Reticulum Stress/genetics
  14. Choy KW, Lau YS, Murugan D, Mustafa MR
    PLoS One, 2017;12(5):e0178365.
    PMID: 28562691 DOI: 10.1371/journal.pone.0178365
    Endoplasmic reticulum (ER) stress leads to endothelial dysfunction which is commonly associated in the pathogenesis of several cardiovascular diseases. We explored the vascular protective effects of chronic treatment with paeonol (2'-hydroxy-4'-methoxyacetophenone), the major compound from the root bark of Paeonia suffruticosa on ER stress-induced endothelial dysfunction in mice. Male C57BL/6J mice were injected intraperitoneally with ER stress inducer, tunicamycin (1 mg/kg/week) for 2 weeks to induce ER stress. The animals were co-administered with or without paeonol (20 mg/kg/oral gavage), reactive oxygen species (ROS) scavenger, tempol (20 mg/kg/day) or ER stress inhibitor, tauroursodeoxycholic acid (TUDCA, 150 mg/kg/day) respectively. Blood pressure and body weight were monitored weekly and at the end of treatment, the aorta was isolated for isometric force measurement. Protein associated with ER stress (GRP78, ATF6 and p-eIF2α) and oxidative stress (NOX2 and nitrotyrosine) were evaluated using Western blotting. Nitric oxide (NO) bioavailability were determined using total nitrate/nitrite assay and western blotting (phosphorylation of eNOS protein). ROS production was assessed by en face dihydroethidium staining and lucigenin-enhanced chemiluminescence assay, respectively. Our results revealed that mice treated with tunicamycin showed an increased blood pressure, reduction in body weight and impairment of endothelium-dependent relaxations (EDRs) of aorta, which were ameliorated by co-treatment with either paeonol, TUDCA and tempol. Furthermore, paeonol reduced the ROS level in the mouse aorta and improved NO bioavailability in tunicamycin treated mice. These beneficial effects of paeonol observed were comparable to those produced by TUDCA and tempol, suggesting that the actions of paeonol may involve inhibition of ER stress-mediated oxidative stress pathway. Taken together, the present results suggest that chronic treatment with paeonol preserved endothelial function and normalized blood pressure in mice induced by tunicamycin in vivo through the inhibition of ER stress-associated ROS.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  15. Lau YS, Mustafa MR, Choy KW, Chan SMH, Potocnik S, Herbert TP, et al.
    Sci Rep, 2018 01 29;8(1):1818.
    PMID: 29379034 DOI: 10.1038/s41598-018-19584-8
    Endoplasmic reticulum (ER) stress has been implicated in the development of hypertension 3 through the induction of endothelial impairment. As 3',4'-dihydroxyflavonol (DiOHF) 4 reduces vascular injury caused by ischaemia/reperfusion or diabetes, and flavonols have been demonstrated to attenuate ER stress, we investigated whether DiOHF can protect mice from ER stress-induced endothelial dysfunction. Male C57BLK/6 J mice were injected with tunicamycin to induce ER stress in the presence or absence of either DiOHF or tauroursodeoxycholic acid (TUDCA), an inhibitor of ER stress. Tunicamycin elevated blood pressure and impaired endothelium-dependent relaxation. Moreover, in aortae there was evidence of ER stress, oxidative stress and reduced NO production. This was coincident with increased NOX2 expression and reduced phosphorylation of endothelial nitric oxide synthase (eNOS) on Ser1176. Importantly, the effects of tunicamycin were significantly ameliorated by DiOHF or TUDCA. DiOHF also inhibited tunicamycin-induced ER stress and apoptosis in cultured human endothelial cells (HUVEC). These results provide evidence that ER stress is likely an important initiator of endothelial dysfunction through the induction of oxidative stress and a reduction in NO synthesis and that DiOHF directly protects against ER stress- induced injury. DiOHF may be useful to prevent ER and oxidative stress to preserve endothelial function, for example in hypertension.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  16. Montgomery MK, Mokhtar R, Bayliss J, Parkington HC, Suturin VM, Bruce CR, et al.
    Diabetes, 2018 04;67(4):594-606.
    PMID: 29378767 DOI: 10.2337/db17-0923
    Lipid droplets (LDs) are critical for the regulation of lipid metabolism, and dysregulated lipid metabolism contributes to the pathogenesis of several diseases, including type 2 diabetes. We generated mice with muscle-specific deletion of the LD-associated protein perilipin 5 (PLIN5, Plin5MKO ) and investigated PLIN5's role in regulating skeletal muscle lipid metabolism, intracellular signaling, and whole-body metabolic homeostasis. High-fat feeding induced changes in muscle lipid metabolism of Plin5MKO mice, which included increased fatty acid oxidation and oxidative stress but, surprisingly, a reduction in inflammation and endoplasmic reticulum (ER) stress. These muscle-specific effects were accompanied by whole-body glucose intolerance, adipose tissue insulin resistance, and reduced circulating insulin and C-peptide levels in Plin5MKO mice. This coincided with reduced secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle and liver, resulting in reduced circulating FGF21. Intriguingly, muscle-secreted factors from Plin5MKO , but not wild-type mice, reduced hepatocyte FGF21 secretion. Exogenous correction of FGF21 levels restored glycemic control and insulin secretion in Plin5MKO mice. These results show that changes in lipid metabolism resulting from PLIN5 deletion reduce ER stress in muscle, decrease FGF21 production by muscle and liver, and impair glycemic control. Further, these studies highlight the importance for muscle-liver cross talk in metabolic regulation.
    Matched MeSH terms: Endoplasmic Reticulum Stress/genetics*
  17. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects; Endoplasmic Reticulum Stress/radiation effects
  18. Choy KW, Murugan D, Mustafa MR
    Pharmacol Res, 2018 06;132:119-129.
    PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013
    Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  19. Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, et al.
    Sci Rep, 2018 06 22;8(1):9566.
    PMID: 29934599 DOI: 10.1038/s41598-018-27724-3
    Chalocomoracin (CMR), one of the major secondary metabolites found in fungus-infected mulberry leaves, is a potent anticancer agent. However, its anticancer mechanism remains elusive. Here, we demonstrated the potent anti-tumor activity and molecular mechanism of CMR both in vitro and in vivo. We showed for the first time that CMR treatment markedly promoted paraptosis along with extensive cytoplasmic vacuolation derived from the endoplasmic reticulum, rather than apoptosis, in PC-3 and MDA-MB-231cell lines. Additional studies revealed that ectopic expression of Myc-PINK1 (PTEN-induced kinase 1), a key regulator of mitophagy, rendered LNCap cells susceptible to CMR-induced paraptosis, suggesting that the mitophagy-dependent pathway plays a crucial role in inducing paraptosis by activating PINK1. CMR treatment directly upregulated PINK1 and downregulated Alix genes in MDA-MB-231 and PC-3 cell lines. Furthermore, mitophagy signaling and paraptosis with cytoplasmic vacuolation could be blocked by antioxidant N-acetylcysteine (NAC), indicating the novel pathway was triggered by reactive oxygen species (ROS) production. An in vivo MDA-MB-231 xenograft tumor model revealed that CMR suppressed tumor growth by inducing vacuolation production through the same signal changes as those observed in vitro. These data suggest that CMR is a potential therapeutic entity for cancer treatment through a non-apoptotic pathway.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects
  20. Tham SY, Loh HS, Mai CW, Fu JY
    Int J Mol Sci, 2019 Jan 16;20(2).
    PMID: 30654580 DOI: 10.3390/ijms20020372
    Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links