Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Yeo JL, Tan BT, Achike FI
    Eur J Pharmacol, 2010 Sep 10;642(1-3):99-106.
    PMID: 20553918 DOI: 10.1016/j.ejphar.2010.05.040
    Acidosis modulates physiologic and pathophysiologic processes but the mechanism of acidotic vasodilatation remains unclear. We therefore explored this in aortic rings from normal and streptozotocin-induced diabetic Sprague-Dawley rats. Phenylephrine (PE)-induced contraction in endothelium-intact and -denuded rings were recorded under normal and acidotic pH with or without drug probes. Acidosis exerted a relaxant effect in endothelium-intact and -denuded euglycaemic and diabetic tissues. l-NAME or methylene blue partially inhibited acidotic relaxation in these endothelium-intact but not the -denuded tissues, with greater inhibition in the diabetic tissues, indicating that acidosis induces relaxation by endothelium-dependent and -independent mechanisms, the former being EDNO-cGMP mediated. Indomethacin had no effect on the tissues, indicating that cyclooxygenase products are neither involved in acidosis-induced vasodilatation nor in the modulation of phenylephrine-contraction. In euglycaemic tissues under normal pH, no K(+) channel blocker altered phenylephrine-contraction, but all (except glibenclamide) enhanced diabetic tissue contraction, indicating that normally, these channels (K(ir), K(V), BK(Ca), K(ATP)) do not modulate phenylephrine-contraction, but they (except K(ATP)) are expressed in diabetes where they attenuate phenylephine-induced contraction and modulate acidosis. Only the K(ir) channel modulates acidotic relaxation in euglycaemic tissues. Only tetraethylammonium and iberiotoxin enhanced phenylephrine-induced contraction in endothelium-denuded diabetic tissues indicating that BK(Ca) attenuates phenylephrine-contraction and that acidotic relaxation in this condition is modulated by a tetraethylammonium-sensitive mechanism. In conclusion, acidosis causes vasodilatation in normal and diabetic tissues via endothelium-dependent and -independent mechanisms differentially modulated by a combination of a NO-cGMP process and K(+) channels, some of which are dormant in the normal state but activated in diabetes mellitus.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  2. Yong YK, Chiong HS, Somchit MN, Ahmad Z
    PMID: 26468073 DOI: 10.1186/s12906-015-0901-3
    Histamine is established as a potent inflammatory mediator and it is known to increased endothelial permeability by promoting gap formation between endothelial cells. Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear. Therefore, the current study aimed to determine the protective effect of AEBO against histamine-induced hyperpermeability in vitro.
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  3. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Mohamed AJ, et al.
    J Ethnopharmacol, 2010 Jan 8;127(1):19-25.
    PMID: 19808083 DOI: 10.1016/j.jep.2009.09.057
    The present study was aimed to investigate the pharmacological basis for the use of Loranthus ferrugineus in hypertension.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  4. Jafari SF, Al-Suede FSR, Yehya AHS, Ahamed MBK, Shafaei A, Asif M, et al.
    Biomed Pharmacother, 2020 Oct;130:110602.
    PMID: 32771894 DOI: 10.1016/j.biopha.2020.110602
    PURPOSE: Koetjapic acid is an active compound of a traditional medicinal plant, Sandoricum koetjape. Although koetjapic acid has a promising anticancer potential, yet it is highly insoluble in aqueous solutions. To increase aqueous solubility of koetjapic acid, we have previously reported a chemical modification of koetjapic acid to potassium koetjapate (KKA). However, pharmacokinetics of KKA has not been studied. In this study, pharmacokinetics and antiangiogenic efficacy of KKA are investigated.

    METHODS: Pharmacokinetics of KKA was studied after intravenous and oral administration in SD rats using HPLC. Anti-angiogenic efficacy of KKA was investigated in rat aorta, human endothelial cells (EA.hy926) and nude mice implanted with matrigel.

    RESULTS: Pharmacokinetic study revealed that KKA was readily absorbed into blood and stayed for a long time in the body with Tmax 2.89 ± 0.12 h, Cmax 7.24 ± 0.36 μg/mL and T1/2 1.46 ± 0.03 h. The pharmacological results showed that KKA significantly suppressed sprouting of microvessels in rat aorta with IC50 18.4 ± 4.2 μM and demonstrated remarkable inhibition of major endothelial functions such as migration, differentiation and VEGF expression in endothelial cells. Further, KKA significantly inhibited vascularization in matrigel plugs implanted in nude mice.

    CONCLUSIONS: The results indicate that bioabsorption of KKA from oral route was considerably efficient with longer retention in body than compared to that of the intravenous route. Further, improved antiangiogenic activity of KKA was recorded which could probably be due to its increased solubility and bioavailability. The results revealed that KKA inhibits angiogenesis by suppressing endothelial functions and expression of VEGF.

    Matched MeSH terms: Endothelium, Vascular/drug effects
  5. Sharma AK, Khanna D, Balakumar P
    Int J Cardiol, 2014 Mar 15;172(2):530-2.
    PMID: 24495652 DOI: 10.1016/j.ijcard.2014.01.053
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  6. Iqbal Z, Bello I, Asmawi MZ, Al-Mansoub MA, Ahmad A, Jabeen Q, et al.
    Inflammopharmacology, 2019 Apr;27(2):421-431.
    PMID: 29185178 DOI: 10.1007/s10787-017-0422-4
    Previous studies have investigated the cardiovascular activity of Gynura procumbens Merr. single-solvent extracts. The objective of this study was to evaluate the in vitro vasorelaxant properties and the underlying pharmacological mechanisms of serial extracts and fractions of Gynura procumbens (GP). The leaves of GP were serially extracted with petroleum ether, chloroform, methanol and water using the maceration method. Suspended aortic ring preparations were pre-contracted with phenylephrine (PE 1 µM), followed by cumulative addition of GP extracts (0.25-3 mg/mL). The petroleum ether extract (GPPE) was the most potent among the four extracts. Pre-incubation of endothelium-intact aorta with atropine (1 µM), indomethacin (10 µM), methylene blue (10 µM), propranolol (1 µM) and potassium channel blockers such as TEA (1 µM), glibenclamide (10 µM), 4-aminopyridine (1 µM) and barium chloride (10 mM) had no effect on GPPE-induced vasorelaxation. The vasorelaxant effect of GPPE was partly diminished by pretreatment of aortic rings preparations with L-NAME (10 µM) and even more so in endothelium-denuded aortic rings, indicating a minimal involvement of endothelium-dependent pathway in GPPE-induced vasorelaxation. The calcium-induced vasocontractions were antagonized significantly and concentration-dependently by GPPE in calcium free and high potassium medium. These results illustrate that Ca2+ antagonizing actions of GPPE in rat isolated aorta are comparable to that of verapamil and may be mainly responsible for its vasodilation effect. The antioxidant activity of GPPE supports its vasorelaxant effect by attenuating the production of deleterious free radicals and reactive oxygen species in the vasculature.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  7. Khan AU, Ullah R, Khan A, Mustafa MR, Hussain J, Murugan DD, et al.
    Clin Exp Hypertens, 2012;34(2):132-9.
    PMID: 21967029 DOI: 10.3109/10641963.2011.601383
    This study describes the vasorelaxant potential of some pure compounds isolated from Phlomis bracteosa L. marrubiin, phlomeoic acid, and two new constituents labeled as RA and RB. In rat thoracic aortic rings denuded of endothelium, marrubiin, phlomeoic acid, RA, and RB caused relaxation of high K(+) (80 mM) and phenylephrine (1 μM)-induced contractions at the concentration range of 1.0-1000 μg/mL. Marrubiin, phlomeoic acid, RA, and RB concentration dependently (3.0-10 μg/mL) shifted the Ca(++) curves to the right obtained in Ca(++)-free medium. The vasodilator effect of marrubiin, phlomeoic acid, RA, and RB was partially blocked by N(ω)-nitro-L-arginine methyl ester in endothelium-intact aorta preparations. These results reveal that P. bracteosa constituents: marrubiin, phlomeoic acid, RA, and RB exhibit vasodilator action occurred via a combination of endothelium-independent Ca(++) antagonism and endothelium-dependent N(ω)-nitro-L-arginine methyl ester-sensitive nitric oxide-modulating mechanism.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  8. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  9. Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y
    Biochem Pharmacol, 2017 Jul 15;136:76-85.
    PMID: 28396195 DOI: 10.1016/j.bcp.2017.04.007
    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  10. Lau YS, Tian XY, Mustafa MR, Murugan D, Liu J, Zhang Y, et al.
    Br J Pharmacol, 2013 Nov;170(6):1190-8.
    PMID: 23992296 DOI: 10.1111/bph.12350
    Boldine is a potent natural antioxidant present in the leaves and bark of the Chilean boldo tree. Here we assessed the protective effects of boldine on endothelium in a range of models of diabetes, ex vivo and in vitro.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  11. Siti HN, Kamisah Y, Kamsiah J
    Vascul. Pharmacol., 2015 Aug;71:40-56.
    PMID: 25869516 DOI: 10.1016/j.vph.2015.03.005
    The concept of mild chronic vascular inflammation as part of the pathophysiology of cardiovascular disease, most importantly hypertension and atherosclerosis, has been well accepted. Indeed there are links between vascular inflammation, endothelial dysfunction and oxidative stress. However, there are still gaps in our understanding regarding this matter that might be the cause behind disappointing results of antioxidant therapy for cardiovascular risk factors in large-scale long-term randomised controlled trials. Apart from the limitations of our knowledge, limitations in methodology and assessment of the body's endogenous and exogenous oxidant-antioxidant status are a serious handicap. The pleiotropic effects of antioxidant and anti-inflammation that are shown by some well-established antihypertensive agents and statins partly support the idea of using antioxidants in vascular diseases as still relevant. This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis. In view of the potential benefits of antioxidants, this review will also examine the proposed role of vitamin C, vitamin E and polyphenols in cardiovascular diseases as well as the success or failure of antioxidant therapy for cardiovascular diseases in clinical trials.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  12. Amudha K, Choy AM, Mustafa MR, Lang CC
    Cardiovasc Ther, 2008;26(4):253-61.
    PMID: 19035876 DOI: 10.1111/j.1755-5922.2008.00064.x
    Endothelial function is impaired in healthy subjects at risk of type 2 diabetes mellitus (DM). We investigated whether endothelial dysfunction can be normalized by statin therapy in this potentially predisposed population. Flow-mediated dilation (FMD) was measured in 56 first-degree relatives (FDRs) (normotensive, normal glucose tolerance) and 20 age-, sex-, and BMI-matched controls with no family history of DM. Other measurements included insulin resistance index using the homeostasis model of insulin resistance (HOMA(IR)), plasma lipids, and markers of inflammation. The FDRs were then randomized and treated with atorvastatin (80 mg) or placebo daily in a 4-week double-blind, placebo-controlled trial. The FDRs had significantly impaired FMD (4.4 +/- 8.1% vs. 13.0 +/- 4.2%; P < 0.001), higher HOMA(IR) (1.72 +/- 1.45 vs. 1.25 +/- 0.43; P = 0.002), and elevated levels of plasma markers of inflammation-highly sensitive C-reactive protein (hsCRP) (2.6 +/- 3.8 mg/L vs. 0.7 +/- 1.0 mg/L; P = 0.06), interleukin (IL)-6 (0.07 +/- 0.13 ng/mL vs. 0.03 +/- 0.01 ng/mL; P < 0.001), and soluble intercellular adhesion molecule (sICAM) (267.7 +/- 30.7 ng/mL vs. 238.2 +/- 20.4 ng/mL; P < 0.001). FMD improved in the atorvastatin-treated subjects when compared with the placebo-treated subjects (atorvastatin, from 3.7 +/- 8.5% to 9.8 +/- 7.3%; placebo, from 3.9 +/- 5.6% to 4.7 +/- 4.2%; P = 0.001). There were also reductions in the levels of IL-6 (0.08 +/- 0.02 ng/mL vs. 0.04 +/- 0.01 ng/mL; P < 0.001) and hsCRP (3.0 +/- 3.9 mg/L vs. 1.0 +/- 1.3 mg/L; P = 0.006). Our study suggests that treatment with atorvastatin may improve endothelial function and decrease levels of inflammatory markers in FDRs of type 2 DM patients.
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  13. Jaarin K, Mustafa MR, Leong XF
    Clinics (Sao Paulo), 2011;66(12):2125-32.
    PMID: 22189740
    OBJECTIVES: The goal of this study was to determine the possible mechanism that is involved in the blood pressure-raising effect of heated vegetable oils.

    METHODS: Adult male Sprague-Dawley rats were divided into 11 groups; the control group was fed with rat chow, and the other groups were fed with chow that was mixed with 15% weight/weight palm or soy oils, which were either in a fresh form or heated once, twice, five, or ten times. Blood pressures were measured at the baseline and throughout the 24-week study. Plasma nitric oxide levels were assessed prior to treatment and at the end of the study. Following 24 weeks, the rats were sacrificed to investigate their vascular reactivity using the thoracic aorta.

    RESULTS: Palm and soy oils had no detrimental effects on blood pressure, and they significantly elevated the nitric oxide contents and reduced the contractile responses to phenylephrine. However, trials using palm and soy oils that were repeatedly heated showed an increase in blood pressure, enhanced phenylephrine-induced contractions, reduced acetylcholine- and sodium nitroprusside-induced relaxations relative to the control and rats that were fed fresh vegetable oils.

    CONCLUSIONS: The blood pressure-raising effect of the heated vegetable cooking oils is associated with increased vascular reactivity and a reduction in nitric oxide levels. The chronic consumption of heated vegetable oils leads to disturbances in endogenous vascular regulatory substances, such as nitric oxide. The thermal oxidation of the cooking oils promotes the generation of free radicals and may play an important contributory role in the pathogenesis of hypertension in rats.

    Matched MeSH terms: Endothelium, Vascular/drug effects*
  14. Lim YL, Mok SL
    Med Princ Pract, 2010;19(4):260-8.
    PMID: 20516701 DOI: 10.1159/000312711
    To investigate the antihypertensive activity of aqueous extracts obtained from Malaysian coastal seaweeds and to determine the pharmacological mechanisms of the extracts on rat aorta in vitro.
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  15. Ling WC, Mustafa MR, Murugan DD
    J Cardiovasc Pharmacol, 2020 02;75(2):123-134.
    PMID: 31651673 DOI: 10.1097/FJC.0000000000000771
    Nitrite, an anion produced from the oxidative breakdown of nitric oxide (NO), has traditionally been viewed as an inert molecule. However, this dogma has been challenged with the findings that nitrite can be readily reduced to NO under pathological conditions, hence representing a physiologically relevant storage reservoir of NO either in the blood or tissues. Nitrite administration has been demonstrated to improve myocardial function in subjects with heart failure and to lower the blood pressure in hypertensive subjects. Thus, extensive amount of work has since been carried out to investigate the therapeutic potential of nitrite in treating cardiovascular diseases, especially hypertension. Studies done on several animal models of hypertension have demonstrated the efficacy of nitrite in preventing and ameliorating the pathological changes associated with the disease. This brief review of the current findings aims to re-evaluate the use of nitrite for the treatment of hypertension and in particular to highlight its role in improving endothelial function.
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  16. Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD
    Vascul. Pharmacol., 2018 03;102:11-20.
    PMID: 28552746 DOI: 10.1016/j.vph.2017.05.003
    AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress.

    METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.

    RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.

    CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.

    Matched MeSH terms: Endothelium, Vascular/drug effects*
  17. Lau YS, Machha A, Achike FI, Murugan D, Mustafa MR
    Exp Biol Med (Maywood), 2012 Jan;237(1):93-8.
    PMID: 22156043 DOI: 10.1258/ebm.2011.011145
    Boldine, a major aporphine alkaloid found in Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of endothelial dysfunction in hypertension. In the present study, we investigated the effects of boldine on endothelial dysfunction in hypertension using spontaneously hypertensive rats (SHR), the most studied animal model of hypertension. SHR and their age-matched normotensive Wistar-Kyoto (WKY) rats were treated with boldine (20 mg/kg per day) or its vehicle, which served as control, for seven days. Control SHR displayed higher systolic blood pressure (SBP), reduced endothelium-dependent aortic relaxation to acetylcholine (ACh), marginally attenuated endothelium-independent aortic relaxation to sodium nitroprusside (SNP), increased aortic superoxide and peroxynitrite production, and enhanced p47(phox) protein expression as compared with control WKY rats. Boldine treatment significantly lowered SBP in SHR but not in WKY. Boldine treatment enhanced the maximal relaxation to ACh in SHR, but had no effect in WKY, whereas the sensitivity to ACh was increased in both SHR and WKY aortas. Boldine treatment enhanced sensitivity, but was without effect on maximal aortic relaxation responses, to SNP in both WKY and SHR aortas. In addition, boldine treatment lowered aortic superoxide and peroxynitrite production and downregulated p47(phox) protein expression in SHR aortas, but had no effect in the WKY control. These results show that boldine treatment exerts endothelial protective effects in hypertension, achieved, at least in part, through the inhibition of NADPH-mediated superoxide production.
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  18. Yeh-Siang L, Subramaniam G, Hadi AH, Murugan D, Mustafa MR
    Molecules, 2011 Apr 06;16(4):2990-3000.
    PMID: 21471938 DOI: 10.3390/molecules16042990
    Generation of reactive oxygen species plays a pivotal role in the development of cardiovascular diseases. The present study describes the effects of the methanolic extract of Phoebe grandis (MPG) stem bark on reactive oxygen species-induced endothelial dysfunction in vitro. Endothelium-dependent (acetylcholine, ACh) and -independent relaxation (sodium nitroprusside, SNP) was investigated from isolated rat aorta of Sprague-Dawley (SD) in the presence of the β-NADH (enzymatic superoxide inducer) and MPG extract. Superoxide anion production in aortic vessels was measured by lucigen chemiluminesence. Thirty minutes incubation of the rat aorta in vitro with β-NADH increased superoxide radical production and significantly inhibited ACh-induced relaxations. Pretreatment with MPG (0.5, 5 and 50 μg/mL) restored the ACh-induced relaxations (R(max): 92.29% ± 2.93, 91.02% ± 4.54 and 88.31 ± 2.36, respectively) in the presence of β-NADH. MPG was ineffective in reversing the impaired ACh-induced relaxations caused by pyrogallol, a non-enzymatic superoxide generator. Superoxide dismutase (a superoxide scavenger), however, reversed the impaired ACh relaxations induced by both β-NADH and pyrogallol. MPG also markedly inhibited the β-NADH-induced generation of the superoxide radicals. Furthermore, MPG scavenging peroxyl radicals generated by tBuOOH (10⁻⁴ M).These results indicate that MPG may improve the endothelium dependent relaxations to ACh through its scavenging activity as well as by inhibiting the NADH/NADPH oxidase induced generation of superoxide anions.
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  19. Subramaniam G, Achike FI, Mustafa MR
    Regul. Pept., 2009 Jun 5;155(1-3):70-5.
    PMID: 19362578 DOI: 10.1016/j.regpep.2009.04.008
    The effect of acidosis on insulin-induced relaxation was studied in thoracic aortic rings (from Wistar-Kyoto (WKY) rats) with (+ED) or without (-ED) endothelium. The rings were mounted in normal (pH 7.4) or acidotic (pH 7.2) Krebs solution for isometric tension recording. Phenylephrine (PE, 3.0 microM)-contracted tissues were exposed to insulin in the presence or absence of various inhibitors. Insulin exerted similar concentration-dependent relaxation of +ED tissues in normal and acidotic pH. Endothelium denudation, significantly (p<0.05) reduced insulin effect in normal, but not acidotic pH. Under normal pH, treatment with L-NAME or methylene blue significantly (p<0.05) reduced insulin responses in the +ED (but not the -ED) tissues. The insulin effect was also significantly (p<0.05) inhibited by tetraethylammonium (TEA; BK(Ca) blocker), 4-Aminopyridine (4-AP; K(V) channel blocker), combined treatments (L-NAME+4-AP+TEA, in +ED tissues) or (4-AP+TEA, in -ED tissues). In either +ED or -ED tissues, indomethacin (cyclo-oxygenase inhibitor), glibenclamide (K(ATP) channel blocker), barium chloride (K(ir) channel blocker) or Ouabain (a Na(+)/K(+)-ATPase inhibitor) had no effect. Except for methylene blue (effect on +ED tissues), none of the drug treatments inhibited insulin vasodilator effect in acidosis (+ED or -ED tissues). These data indicate that insulin exerts an endothelium-dependent and -independent vasodilatation in rat aorta which in normal pH is mediated via BK(Ca) and K(v) channels, including the EDNO-cGMP cascade. Acidosis abolishes the endothelium-dependent relaxation mechanism unraveling a novel mechanism that is as efficacious and is cGMP-, but not EDNO-, BK(Ca)- or K(v)-mediated.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  20. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Endothelium, Vascular/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links