Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Zulkifli I, Fauziah O, Omar AR, Shaipullizan S, Siti Selina AH
    Vet Res Commun, 1999 Mar;23(2):91-9.
    PMID: 10359153
    Two experiments were conducted to evaluate the effect of formaldehyde vaporization of a hatcher on the tracheal epithelium of chick embryos, and on the production performance and behaviour of commercial broiler chicks. In experiment 1, chick embryos were exposed to 23.5 ppm of formaldehyde vapour during the last 3 days of incubation. Tracheal samples were taken at 0, 6, 30 and 54 h after exposure to formaldehyde and examined by scanning electron microscopy for pathological changes. Observable lesions included excessive accumulation of mucus, matted cilia, loss of cilia and sloughing of the epithelium. The lesions were more severe in chicks exposed for 54 h as compared to those exposed for 6 or 30 h. In experiment 2, 60 chicks that had been exposed to formaldehyde vapour as above and 60 control chicks were used to investigate the effect of formaldehyde fumigation on production performance and behaviour. Formaldehyde vaporization resulted in higher weekly (days 0-6 and 21-27) and total (days 0-41) feed intake and poorer weekly (days 0-6, 7-13, 21-27 and 28-34) and overall (days 0-41) feed conversion ratios. Body weight, mortality and behaviour (eating, drinking, sitting and standing activities) were not affected by formaldehyde fumigation.
    Matched MeSH terms: Epithelial Cells/drug effects
  2. D'Souza UJ
    Asian J Androl, 2004 Sep;6(3):223-6.
    PMID: 15273871
    To observe the effect of tamoxifen citrate on spermatogenesis and tubular morphology in rats.
    Matched MeSH terms: Epithelial Cells/drug effects
  3. Bhatia M, Landolfi C, Basta F, Bovi G, Ramnath RD, de Joannon AC, et al.
    Inflamm Res, 2008 Oct;57(10):464-71.
    PMID: 18827968 DOI: 10.1007/s00011-008-7210-y
    Chemokines play a fundamental role in trafficking and activation of leukocytes in colonic inflammation. We investigated the ability of bindarit, an inhibitor of monocyte chemoattractant protein-1 (MCP-1/CCL2) synthesis, to inhibit chemokine production by human intestinal epithelial cells (HT-29) and its effect in trinitro-benzene sulfonic acid (TNBS)-induced colitis in mice.
    Matched MeSH terms: Epithelial Cells/drug effects
  4. In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH
    Anticancer Drugs, 2011 Jun;22(5):424-34.
    PMID: 21346553 DOI: 10.1097/CAD.0b013e328343cbe6
    In this study, the apoptotic mechanism and combinatorial chemotherapeutic effects of the cytotoxic phenylpropanoid compound 1'S-1'-acetoxyeugenol acetate (AEA), extracted from rhizomes of the Malaysian ethnomedicinal plant Alpinia conchigera Griff. (Zingiberaceae), on MCF-7 human breast cancer cells were investigated for the first time. Data from cytotoxic and apoptotic assays such as live and dead and poly-(ADP-ribose) polymerase cleavage assays indicated that AEA was able to induce apoptosis in MCF-7 cells, but not in normal human mammary epithelial cells. A microarray global gene expression analysis of MCF-7 cells, treated with AEA, suggested that the induction of tumor cell death through apoptosis was modulated through dysregulation of the nuclear factor-kappaB (NF-κB) pathway, as shown by the reduced expression of various κB-regulated gene targets. Consequent to this, western blot analysis of proteins corresponding to the NF-κB pathway indicated that AEA inhibited phosphorylation levels of the inhibitor of κB-kinase complex, resulting in the elimination of apoptotic resistance originating from NF-κB activation. This AEA-based apoptotic modulation was elucidated for the first time in this study, and gave rise to the proposal of an NF-κB model termed the 'Switching/Alternating Model.' In addition to this, AEA was also found to synergistically enhance the proapoptotic effects of paclitaxel, when used in combination with MCF-7 cells, presumably by a chemosensitizing role. Therefore, it was concluded that AEA isolated from the Malaysian tropical ginger (A. conchigera) served as a very promising candidate for further in-vivo development in animal models and in subsequent clinical trials involving patients with breast-related malignancies.
    Matched MeSH terms: Epithelial Cells/drug effects
  5. Rasouli M, Ahmad Z, Omar AR, Allaudin ZN
    BMC Biotechnol, 2011 Nov 03;11:99.
    PMID: 22047106 DOI: 10.1186/1472-6750-11-99
    BACKGROUND: Diabetes mellitus is a complicated disease with a pathophysiology that includes hyperinsulinemia, hyperglycemia and other metabolic impairments leading to many clinical complications. It is necessary to develop appropriate treatments to manage the disease and reduce possible acute and chronic side effects. The advent of gene therapy has generated excitement in the medical world for the possible application of gene therapy in the treatment of diabetes. The glucagon-like peptide-1 (GLP-1) promoter, which is recognised by gut L-cells, is an appealing candidate for gene therapy purposes. The specific properties of L-cells suggest that L-cells and the GLP-1 promoter would be useful for diabetes therapy approaches.

    RESULTS: In this study, L-cells were isolated from a primary intestinal cell line to create suitable target cells for insulin expression studies. The isolated cells displayed L-cell properties and were therefore used as an L-cell surrogate. Next, the isolated L-cells were transfected with the recombinant plasmid consisting of an insulin gene located downstream of the GLP-1 promoter. The secretion tests revealed that an increase in glucose concentration from 5 mM to 25 mM induced insulin gene expression in the L-cells by 2.7-fold. Furthermore, L-cells quickly responded to the glucose stimulation; the amount of insulin protein increased 2-fold in the first 30 minutes and then reached a plateau after 90 minutes.

    CONCLUSION: Our data showed that L-cells efficiently produced the mature insulin protein. In addition, the insulin protein secretion was positively regulated with glucose induction. In conclusion, GLP-1 promoter and L-cell could be potential candidates for diabetes gene therapy agents.

    Matched MeSH terms: Epithelial Cells/drug effects
  6. Ruszymah BH, Chowdhury SR, Manan NA, Fong OS, Adenan MI, Saim AB
    J Ethnopharmacol, 2012 Mar 27;140(2):333-8.
    PMID: 22301444 DOI: 10.1016/j.jep.2012.01.023
    Centella asiatica is a traditional herbal medicine that has been shown to have pharmacological effect on skin wound healing, and could be potential therapeutic agent for corneal epithelial wound healing.
    Matched MeSH terms: Epithelial Cells/drug effects*
  7. Lee YK, Lay LK, Mahsufi MS, Guan TS, Elumalai S, Thong OM
    Pak J Pharm Sci, 2012 Jul;25(3):645-50.
    PMID: 22713955
    The rubber tree (Hevea brasiliensis) extracts are becoming increasingly visible in pharmaceutical and therapeutical research. The present study is aimed at examining the specific anti-proliferation property of H. brasiliensis latex B-serum sub-fractions against human breast cancer epithelial cell lines MCF-7 and MDA-MB231. The results showed that the latex whole B-serum and DBP sub-fraction exerted a specific anti-proliferation activity against cancer-origin cells MDA-MB231 but had little effect on non-cancer-origin cells. On the other hand, the anti-proliferative activity was diminished in the pre-heated B-serum fractions. With the low toxicity that the B-serum demonstrated previously in Brine Shrimp Lethality Test (BSLT), the present results suggest the potential use of the B-serum sub-fractions in cancer treatment.
    Matched MeSH terms: Epithelial Cells/drug effects*
  8. Fatimah SS, Tan GC, Chua KH, Tan AE, Hayati AR
    J Biosci Bioeng, 2012 Aug;114(2):220-7.
    PMID: 22578596 DOI: 10.1016/j.jbiosc.2012.03.021
    Human amnion epithelial cells (HAECs) hold great promise in tissue engineering for regenerative medicine. Large numbers of HAECs are required for this purpose. Hence, exogenous growth factor is added to the culture medium to improve epithelial cells proliferation. The aim of the present study was to determine the effects of epidermal growth factor (EGF) on the proliferation and cell cycle regulation of cultured HAECs. HAECs at P1 were cultured for 7 days in medium containing an equal volume mix of HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of EGF (0, 5, 10, 20, 30 and 50 ng/ml EGF) in reduced serum. Morphology, growth kinetics and cell cycle analysis using flow cytometry were assessed. Quantitative gene expression for cell cycle control genes, pluripotent transcription factors, epithelial genes and neuronal genes were also determined. EGF enhanced HAECs proliferation with optimal concentration at 10 ng/ml EGF. EGF significantly increased the proportion of HAECs at S- and G2/M-phase of the cell cycle compared to the control. At the end of culture, HAECs remained as diploid cells under cell cycle analysis. EGF significantly decreased the mRNA expression of p21, pRb, p53 and GADD45 in cultured HAECs. EGF also significantly decreased the pluripotent genes expression: Oct-3/4, Sox2 and Nanog; epithelial genes expression: CK14, p63, CK1 and Involucrin; and neuronal gene expression: NSE, NF-M and MAP 2. The results suggested that EGF is a strong mitogen that promotes the proliferation of HAECs through cell cycle regulation. EGF did not promote HAECs differentiation or pluripotent genes expression.
    Matched MeSH terms: Epithelial Cells/drug effects*
  9. Muhd Haffiz J, Norhayati I, Getha K, Nor Azah MA, Mohd Ilham A, Lili Sahira H, et al.
    Trop Biomed, 2013 Mar;30(1):9-14.
    PMID: 23665703 MyJurnal
    Essential oil from Cymbopogon nardus was evaluated for activity against Trypanosoma brucei brucei BS221 (IC50 = 0.31 ± 0.03 μg/mL) and cytotoxic effect on normal kidney (Vero) cells (IC50 = >100 μg/mL). The crude essential oil was subjected to various chromatography techniques afforded active sub fractions with antitrypanosomal activity; F4 (IC50 = 0.61 ± 0.06 μg/mL), F6 (IC50= 0.73 ± 0.33 μg/mL), F7 (IC50 = 1.15 ± 0 μg/mL) and F8 (IC50 = 1.11 ± 0.01 μg/mL). These active fractions did not exhibit any toxic effects against Vero cell lines and the chemical profiles investigation indicated presence of α-and γ-eudesmol, elemol, α-cadinol and eugenol by GC/MS analysis.
    Matched MeSH terms: Epithelial Cells/drug effects
  10. Fatimah SS, Tan GC, Chua K, Tan AE, Nur Azurah AG, Hayati AR
    Burns, 2013 Aug;39(5):905-15.
    PMID: 23273814 DOI: 10.1016/j.burns.2012.10.019
    The aim of the present study was to determine the effects of KGF on the differentiation of cultured human amnion epithelial cells (HAECs) towards skin keratinocyte. HAECs at passage 1 were cultured in medium HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of KGF (0, 5, 10, 20, 30 and 50 ng/ml KGF). Dose-response of KGF on HAECs was determined by morphological assessment; growth kinetic evaluation; immunocytochemical analysis; stemness and epithelial gene expression quantification with two step real time RT-PCR. KGF promotes the proliferation of HAECs with maximal effect observed at 10 ng/ml KGF. However, KGF decreased the stemness genes expression: Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4, FZD-9 and BST-1. KGF also down-regulates epithelial genes expression: CK3, CK18, CK19, Integrin-β1, p63 and involucrin in cultured HAECs. No significant difference on the gene expression was detected for each Nestin, ABCG-2, CK1 and CK14 in KGF-treated HAECs. Immunocytochemical analysis for both control and KGF-treated HAECs demonstrated positive staining against CK14 and CK18 but negative staining against involucrin. The results suggested that KGF stimulates an early differentiation of HAECs towards epidermal cells. Differentiation of KGF-treated HAECs to corneal lineage is unfavourable. Therefore, further studies are needed to elucidate the roles of KGF in the differentiation of HAECs towards skin keratinocytes.
    Matched MeSH terms: Epithelial Cells/drug effects*
  11. Subramaniam KS, Tham ST, Mohamed Z, Woo YL, Mat Adenan NA, Chung I
    PLoS One, 2013;8(7):e68923.
    PMID: 23922669 DOI: 10.1371/journal.pone.0068923
    Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs) using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin) and hormonal (estrogen and progesterone) receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175%) when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51%) (P<0.0001). These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001), suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR), also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP)-1, interleukin (IL)-6, IL-8, RANTES and vascular endothelial growth factor (VEGF) than normal fibroblasts. Our data suggests that in contrast to normal fibroblasts, CAFs may exhibit a pro-tumorigenic effect in the progression of endometrial cancer, and PI3K/Akt and MAPK/Erk signaling may represent critical regulators in how endometrial cancer cells respond to their microenvironment.
    Matched MeSH terms: Epithelial Cells/drug effects
  12. Ismail NA, Baines DL, Wilson SM
    Eur J Pharmacol, 2014 Jun 05;732:32-42.
    PMID: 24657276 DOI: 10.1016/j.ejphar.2014.03.005
    Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na(+) channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser(221), -Ser(327) and -Thr(246). This Nedd4-2 inactivation process is thought to be central to the hormonal control of Na(+) absorption. The present study of H441 human airway epithelial cells therefore explores the effects of SGK1 and / or PKA upon the phosphorylation / abundance of endogenous Nedd4-2; the surface expression of ENaC subunits, and electrogenic Na(+) transport. Effects on Nedd4-2 phosphorylation/abundance and the surface expression of ENaC were monitored by western analysis, whilst Na(+) absorption was quantified electrometrically. Acutely (20min) activating PKA in glucocorticoid-deprived (24h) cells increased the abundance of Ser(221)-phosphorylated, Ser(327)-phosphorylated and total Nedd4-2 without altering the abundance of Thr(246)-phosphorylated Nedd4-2. Activating PKA under these conditions did not cause a co-ordinated increase in the surface abundance of α-, β- and γ-ENaC and had only a very small effect upon electrogenic Na(+) absorption. Activating PKA (20min) in glucocorticoid-treated (0.2µM dexamethasone, 24h) cells, on the other hand, increased the abundance of Ser(221)-, Ser(327)- and Thr(246)-phosphorylated and total Nedd4-2; increased the surface abundance of α-, β- and γ-ENaC and evoked a clear stimulation of Na(+) transport. Chronic glucocorticoid stimulation therefore appears to allow cAMP-dependent control of Na(+) absorption by facilitating the effects of PKA upon the Nedd4-2 and ENaC subunits.
    Matched MeSH terms: Epithelial Cells/drug effects
  13. Bukhari SN, Jantan I, Unsal Tan O, Sher M, Naeem-Ul-Hassan M, Qin HL
    J Agric Food Chem, 2014 Jun 18;62(24):5538-47.
    PMID: 24901506 DOI: 10.1021/jf501145b
    Hyperpigmentation in human skin and enzymatic browning in fruits, which are caused by tyrosinase enzyme, are not desirable. Investigations in the discovery of tyrosinase enzyme inhibitors and search for improved cytotoxic agents continue to be an important line in drug discovery and development. In present work, a new series of 30 compounds bearing α,β-unsaturated carbonyl moiety was designed and synthesized following curcumin as model. All compounds were evaluated for their effects on human cancer cell lines and mushroom tyrosinase enzyme. Moreover, the structure-activity relationships of these compounds are also explained. Molecular modeling studies of these new compounds were carried out to explore interactions with tyrosinase enzyme. Synthetic curcumin-like compounds (2a-b) were identified as potent anticancer agents with 81-82% cytotoxicity. Five of these newly synthesized compounds (1a, 8a-b, 10a-b) emerged to be the potent inhibitors of mushroom tyrosinase, providing further insight into designing compounds useful in fields of food, health, and agriculture.
    Matched MeSH terms: Epithelial Cells/drug effects
  14. Shahzad H, Giribabu N, Muniandy S, Salleh N
    Int J Clin Exp Pathol, 2014;7(9):5484-94.
    PMID: 25337190
    This study investigated the effect of 10 or 100 mg/kg/day quercetin on the uterus of ovariectomized adult female rats receiving sex-steroid replacement regime mimicking changes in hormonal profiles during the reproductive cycle. Following seven days of treatment with estrogen and progesterone with or without quercetin, uteri were harvested for histological and proliferative cell nuclear antigen (PCNA) protein and mRNA expression and PCNA protein distribution analyses. Our findings indicated that co-administration of 10 mg/kg/day quercetin with estrogen and progesterone caused a significant decrease in the size of uterine lumen and epithelial heights with lower PCNA protein and mRNA expression as compared to estrogen plus progesterone-only treatment (P < 0.05). Concomitant treatment with estrogen and progesterone with 100 mg/kg/day quercetin resulted in a marked increase in the number of glands with increased PCNA protein and mRNA expression. Significantly higher PCNA distribution was observed in the stroma and glands as compared to estrogen plus progesterone-only treatment (P < 0.05). In conclusion, at 10 mg/kg/day, quercetin affects uterine morphology but not proliferation, however at 100 mg/kg/day, quercetin induced significant stromal and glandular proliferation which could predispose the uterus towards neoplastic development.
    Matched MeSH terms: Epithelial Cells/drug effects
  15. Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJ, Rausalu K, et al.
    Sci Rep, 2015;5:11421.
    PMID: 26078201 DOI: 10.1038/srep11421
    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.
    Matched MeSH terms: Epithelial Cells/drug effects
  16. Ajdari Z, Rahman H, Shameli K, Abdullah R, Abd Ghani M, Yeap S, et al.
    Molecules, 2016 Mar 01;21(3):123.
    PMID: 26938520 DOI: 10.3390/molecules21030123
    The current study investigated the anticancer properties of gold nanoparticles (SG-stabilized AuNPs) synthesized using water extracts of the brown seaweed Sargassum glaucescens (SG). SG-stabilized AuNPs were characterized by ultraviolet-visible spectroscopy, transmission and scanning electron microscopy, and energy dispersive X-ray fluorescence spectrometry. The SG-stabilized AuNPs were stable and small at 3.65 ± 1.69 nm in size. The in vitro anticancer effect of SG-stabilized AuNPs was determined on cervical (HeLa), liver (HepG2), breast (MDA-MB-231) and leukemia (CEM-ss) cell lines using fluorescence microscopy, flow cytometry, caspase activity determination, and MTT assays. After 72 h treatment, SG-stabilized AuNPs was shown to be significant (p < 0.05) cytotoxic to the cancer cells in a dose- and time-dependent manner. The IC50 values of SG-stabilized AuNPs on the HeLa, HepG2, CEM-ss, MDA-MB-231 cell lines were 4.75 ± 1.23, 7.14 ± 1.45, 10.32 ± 1.5, and 11.82 ± 0.9 μg/mL, respectively. On the other hand, SG-stabilized AuNPs showed no cytotoxic effect towards the normal human mammary epithelial cells (MCF-10A). SG-stabilized AuNPs significantly (p < 0.05) arrest HeLa cell cycle at G2/M phase and significantly (p < 0.05) activated caspases-3 and -9 activities. The anticancer effect of SG-stabilized AuNPs is via the intrinsic apoptotic pathway. The study showed that SG-stabilized AuNPs is a good candidate to be developed into a chemotherapeutic compound for the treatment of cancers especially cervical cancer.
    Matched MeSH terms: Epithelial Cells/drug effects*
  17. Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al.
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:167-75.
    PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040
    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
    Matched MeSH terms: Epithelial Cells/drug effects
  18. Jiang L, Hindmarch CC, Rogers M, Campbell C, Waterfall C, Coghill J, et al.
    Sci Rep, 2016 10 24;6:35671.
    PMID: 27774996 DOI: 10.1038/srep35671
    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or 'podocytes', the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes.
    Matched MeSH terms: Epithelial Cells/drug effects*
  19. Kardia E, Halim NSSA, Yahaya BH
    Methods Mol Biol, 2016;1516:243-255.
    PMID: 27062596 DOI: 10.1007/7651_2016_327
    Aerosol-based cell delivery technique via intratracheal is an effective route for delivering transplant cells directly into the lungs. An aerosol device known as the MicroSprayer(®) Aerosolizer is invented to transform liquid into an aerosol form, which then can be applied via intratracheal administration for drug delivery. The device produces a uniform and concentrated distribution of aerosolized liquid. Using the capability of MicroSprayer(®) Aerosolizer to transform liquid into aerosol form, our group has designed a novel method of cell delivery using an aerosol-based technique. We have successfully delivered skin-derived fibroblast cells and airway epithelial cells into the airway of a rabbit with minimum risk of cell loss and have uniformly distributed the cells into the airway. This chapter illustrates the application of aerosol device to deliver any type of cells for future treatment of lung diseases.
    Matched MeSH terms: Epithelial Cells/drug effects*
  20. Reena K, Ng KY, Koh RY, Gnanajothy P, Chye SM
    Environ Toxicol, 2017 Jan;32(1):265-277.
    PMID: 26784575 DOI: 10.1002/tox.22233
    para-Phenylenediamine (PPD) has long been used in two-thirds of permanent oxidative hair dye formulations. Epidemiological studies and in vivo studies have shown that hair dye is a suspected carcinogen of bladder cancer. However, the toxicity effects of PPD to human bladder remains elusive. In this study, the effects of PPD and its involvement in the apoptosis pathways in human urothelial cells (UROtsa) was investigated. It was demonstrated that PPD decreased cell viability and increased the number of sub-G1 hypodiploid cells in UROtsa cells. Cell death due to apoptosis was detected using Annexin V binding assay. Further analysis showed PPD generated reactive oxygen species (ROS), induced mitochondrial dysfunction through the loss of mitochondrial membrane potential and increased caspase-3 level in UROtsa cells. Western blot analysis of PPD-treated UROtsa cells showed down-regulation of phosphorylated proteins from NF-κB, mTOR, and Wnt pathways. In conclusion, PPD induced apoptosis via activation of ROS-mediated mitochondrial pathway, and possibly through inhibition of NF-κB, mTOR, and Wnt pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 265-277, 2017.
    Matched MeSH terms: Epithelial Cells/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links