Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  2. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  3. Aliyu AB, Saleha AA, Jalila A, Zunita Z
    BMC Public Health, 2016 08 02;16:699.
    PMID: 27484086 DOI: 10.1186/s12889-016-3377-2
    BACKGROUND: The significant role of retail poultry meat as an important exposure pathway for the acquisition and transmission of extended spectrum β-lactamase-producing Escherichia coli (ESBL-EC) into the human population warrants understanding concerning those operational practices associated with dissemination of ESBL-EC in poultry meat retailing. Hence, the objective of this study was to determine the prevalence, spatial distribution and potential risk factors associated with the dissemination of ESBL-EC in poultry meat retail at wet-markets in Selangor, Malaysia.

    METHODS: Poultry meat (breast, wing, thigh, and keel) as well as the contact surfaces of weighing scales and cutting boards were sampled to detect ESBL-EC by using culture and disk combination methods and polymerase chain reaction assays. Besides, questionnaire was used to obtain data and information pertaining to those operational practices that may possibly explain the occurrence of ESBL-EC. The data were analysed using logistic regression analysis at 95 % CI.

    RESULTS: The overall prevalence of ESBL-EC was 48.8 % (95 % CI, 42 - 55 %). Among the risk factors that were explored, type of countertop, sanitation of the stall environment, source of cleaning water, and type of cutting board were found to be significantly associated with the presence of ESBL-EC.

    CONCLUSIONS: Thus, in order to prevent or reduce the presence of ESBL-EC and other contaminants at the retail-outlet, there is a need to design a process control system based on the current prevailing practices in order to reduce cross contamination, as well as to improve food safety and consumer health.

    Matched MeSH terms: Escherichia coli Infections/microbiology*
  4. Ho WS, Tan LK, Ooi PT, Yeo CC, Thong KL
    BMC Vet Res, 2013;9:109.
    PMID: 23731465 DOI: 10.1186/1746-6148-9-109
    Postweaning diarrhea caused by pathogenic Escherichia coli, in particular verotoxigenic E. coli (VTEC), has caused significant economic losses in the pig farming industry worldwide. However, there is limited information on VTEC in Malaysia. The objective of this study was to characterize pathogenic E. coli isolated from post-weaning piglets and growers with respect to their antibiograms, carriage of extended-spectrum beta-lactamases, pathotypes, production of hemolysins and fimbrial adhesins, serotypes, and genotypes.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  5. Teh AH, Wang Y, Dykes GA
    Can J Microbiol, 2014 Feb;60(2):105-11.
    PMID: 24498987 DOI: 10.1139/cjm-2013-0633
    Urinary tract infections (UTI) caused by uropathogenic Escherichia coli are one of the most common forms of human disease. In this study, the effect of the presence of newly acquired antibiotic resistance genes on biofilm formation of UTI-associated E. coli strains was examined. Two clinical UTI-associated E. coli strains (SMC18 and SMC20) carrying different combinations of virulence genes were transformed with pGEM-T, pGEM-T::KmΔAmp, or pGEM-T::Km to construct ampicillin-resistant (Km(S)Amp(R)), kanamycin-resistant (Km(R)Amp(S)), or ampicillin- and kanamycin-resistant (Km(R)Amp(R)) strains. Transformed and wild-type strains were characterized for biofilm formation, bacterial surface hydrophobicity, auto-aggregation, morphology, and attachment to abiotic surfaces. Transformation with a plasmid carrying an ampicillin resistance gene alone decreased (p < 0.05) biofilm formation by SMC18 (8 virulence marker genes) but increased (p < 0.05) biofilm formation by SMC20 (5 virulence marker genes). On the other hand, transformation with a plasmid carrying a kanamycin resistance gene alone or both ampicillin and kanamycin resistance genes resulted in a decrease (p < 0.05) in biofilm formation by SMC18 but did not affect (p > 0.05) the biofilm formation by SMC20. Our results suggest that transformation of UTI-associated E. coli with plasmids carrying different antibiotic resistance gene(s) had a significant impact on biofilm formation and that these effects were both strain dependent and varied between different antibiotics.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  6. Kim YB, Okuda J, Matsumoto C, Morigaki T, Asai N, Watanabe H, et al.
    FEMS Microbiol Lett, 1998 Sep 01;166(1):43-8.
    PMID: 9741083
    Escherichia coli strains isolated from patients with diarrhea or hemolytic uremic syndrome (HUS) at Pusan University Hospital, South Korea, between 1990 and 1996 were examined for traits of the O157:H7 serogroup. One strain isolated from a patient with HUS belonged to the O157:H7 serotype, possessed a 60-MDa plasmid, the eae gene, and ability to produce Shiga toxin 1 but not Shiga toxin 2. Arbitrarily primed PCR analysis suggested that this strain is genetically very close to a O157:H7 strain isolated in Japan.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  7. Subramaniam G, Palasubramaniam S, Navaratnam P
    Indian J Med Microbiol, 2006 Jul;24(3):205-7.
    PMID: 16912441
    Escherichia coli isolates resistant to ceftazidime isolated in the University Malaya Medical Center (UMMC) Kuala Lumpur, Malaysia, between the years 1998 and 2000 were studied for extended-spectrum beta-lactamase (ESBL) production. All strains were analysed phenotypically and genotypically and found to be ESBL-producing organisms harbouring SHV-5 beta-lactamase. This was confirmed by PCR-SSCP and nucleotide sequencing of the blaSHV amplified gene. As there was no evidence of ESBL activity in E. coli prior to this, coupled with the fact that there was a predominance of SHV-5 beta-lactamases in Klebsiella pneumoniae isolates in UMMC, we postulate that the E. coli obtained the SHV-5 beta-lactamase genes by plasmid transfer from the ESBL-producing K. pneumoniae.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  8. Beatson SA, Ben Zakour NL, Totsika M, Forde BM, Watts RE, Mabbett AN, et al.
    Infect Immun, 2015 May;83(5):1749-64.
    PMID: 25667270 DOI: 10.1128/IAI.02810-14
    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  9. Yu CY, Ang GY, Chin PS, Ngeow YF, Yin WF, Chan KG
    Int J Antimicrob Agents, 2016 Jun;47(6):504-5.
    PMID: 27208898 DOI: 10.1016/j.ijantimicag.2016.04.004
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  10. Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL
    Int J Antimicrob Agents, 2019 Oct;54(4):381-399.
    PMID: 31369812 DOI: 10.1016/j.ijantimicag.2019.07.019
    Carbapenem-resistant Enterobacteriaceae infections have spread globally, leaving polymyxins, including colistin, as 'last-resort treatments'. Emerging colistin resistance raises the spectre of untreatable infections. Despite this threat, data remain limited for much of the world, including Southeast Asia where only 3 of 11 nations submitted data on carbapenem and colistin resistance for recent World Health Organization (WHO) reports. To improve our understanding of the challenge, we utilised broad strategies to search for and analyse data on carbapenem and colistin resistance among Escherichia coli and Klebsiella in Southeast Asia. We found 258 studies containing 526 unique reports and document carbapenem-resistant E. coli and Klebsiella in 8 and 9 of 11 nations, respectively. We estimated carbapenem resistance proportions through meta-analysis of extracted data for nations with ≥100 representative isolates. Estimated resistance among Klebsiella was high (>5%) in four nations (Indonesia, Philippines, Thailand and Vietnam), moderate (1-5%) in two nations (Malaysia and Singapore) and low (<1%) in two nations (Cambodia and Brunei). For E. coli, resistance was generally lower but was high in two of seven nations with ≥100 isolates (Indonesia and Myanmar). The most common carbapenemases were NDM metallo-β-lactamases and OXA β-lactamases. Despite sparse data, polymyxin resistance was documented in 8 of 11 nations, with mcr-1 being the predominant genotype. Widespread presence of carbapenem and polymyxin resistance, including their overlap in eight nations, represents a continuing risk and increases the threat of infections resistant to both classes. These findings, and remaining data gaps, highlight the urgent need for sufficiently-resourced robust antimicrobial resistance surveillance.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  11. Nandanwar N, Janssen T, Kühl M, Ahmed N, Ewers C, Wieler LH
    Int J Med Microbiol, 2014 Oct;304(7):835-42.
    PMID: 25037925 DOI: 10.1016/j.ijmm.2014.06.009
    Extraintestinal pathogenic Escherichia coli (ExPEC) strains of certain genetic lineages are frequently implicated in a wide range of diseases in humans and birds. ExPEC strains belonging to the phylogenetic lineage/sequence type complex 95 (STC95) are one such prominent lineage that is commonly isolated from extraintestinal infections such as systemic disease in poultry and urinary tract infections (UTIs), neonatal meningitis and sepsis in humans. Several epidemiological studies have indicated that ST95 strains obtained from such infections may share similar virulence genes and other genomic features. However, data on their ability to establish infections in vivo as deduced from the manifestation of similar virulence phenotypes remain elusive. In the present study, 116 STC95 ExPEC isolates comprising 55 human and 61 avian strains, possessing similar virulence gene patterns, were characterized in vitro using adhesion, invasion, biofilm formation and serum bactericidal assays. Overall, STC95 strains from both groups, namely human and birds, were equally capable of adhering to and invading the two mammalian kidney cell lines. Similarly, these strains were able to form strong biofilms in M63 medium. Furthermore, they were equally resistant to the bactericidal activity of human and avian serum. Our cumulative data reinforce the understanding that ST95 strains from poultry present a potential zoonotic risk and therefore need a One Health strategy for a successfull intervention.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  12. Ho WS, Gan HM, Yap KP, Balan G, Yeo CC, Thong KL
    J Bacteriol, 2012 Dec;194(23):6691-2.
    PMID: 23144425 DOI: 10.1128/JB.01804-12
    Escherichia coli is an important etiologic agent of lower respiratory tract infections (LRTI). Multidrug-resistant E. coli EC302/04 was isolated from a tracheal aspirate, and its genome sequence is expected to provide insights into antimicrobial resistance as well as adaptive and virulence mechanisms of E. coli involved in LRTI.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  13. Lim KT, Yasin R, Yeo CC, Puthucheary S, Thong KL
    J Biomed Biotechnol, 2009;2009:165637.
    PMID: 19672454 DOI: 10.1155/2009/165637
    The emergence of Escherichia coli that produce extended spectrum beta-lactamases (ESBLs) and are multidrug resistant (MDR) poses antibiotic management problems. Forty-seven E. coli isolates from various public hospitals in Malaysia were studied. All isolates were sensitive to imipenem whereas 36 were MDR (resistant to 2 or more classes of antibiotics). PCR detection using gene-specific primers showed that 87.5% of the ESBL-producing E. coli harbored the blaTEM gene. Other ESBL-encoding genes detected were blaOXA, blaSHV, and blaCTX-M. Integron-encoded integrases were detected in 55.3% of isolates, with class 1 integron-encoded intI1 integrase being the majority. Amplification and sequence analysis of the 5'CS region of the integrons showed known antibiotic resistance-encoding gene cassettes of various sizes that were inserted within the respective integrons. Conjugation and transformation experiments indicated that some of the antibiotic resistance genes were likely plasmid-encoded and transmissible. All 47 isolates were subtyped by PFGE and PCR-based fingerprinting using random amplified polymorphic DNA (RAPD), repetitive extragenic palindromes (REPs), and enterobacterial repetitive intergenic consensus (ERIC). These isolates were very diverse and heterogeneous. PFGE, ERIC, and REP-PCR methods were more discriminative than RAPD in subtyping the E. coli isolates.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  14. Kadum Yakob H, Manaf Uyub A, Fariza Sulaiman S
    J Ethnopharmacol, 2015 Aug 22;172:30-7.
    PMID: 26091966 DOI: 10.1016/j.jep.2015.06.006
    Ludwigia octovalvis is an aquatic plant widely distributed throughout the tropical and sub-tropical regions. It is commonly consumed as a health drink and traditionally used for treating various ailments such as dysentery, diarrhea, diabetes, nephritisn and headache. No information is available on its in vivo antibacterial activity against an important foodborne pathogen, Shiga toxin producing Escherichia coli O157:H7.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  15. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Infect Dev Ctries, 2016 Oct 31;10(10):1053-1058.
    PMID: 27801366 DOI: 10.3855/jidc.6944
    INTRODUCTION: Uropathogenic virulence factors have been identified by comparing the prevalence of these among urinary tract isolates and environmental strains. The uropathogenic-specific protein (USP) gene is present on the pathogenicity island (PAI) of uropathogenic Escherichia coli (UPEC) and, depending on its two diverse gene types and the sequential patterns of three open reading frame units (orfUs) following it, there is a method to characterize UPEC epidemiologically called PAIusp subtyping.
    METHODOLOGY: A total of 162 UPEC isolates from Sabah, Malaysia, were tested for the presence of the usp gene and the sequential patterns of three orfUs following it using polymerase chain reaction (PCR). In addition, by means of triplex PCR, the prevalence of the usp gene was compared with other two VFs of UPEC, namely alpha hemolysin (α-hly) and cytotoxic necrotizing factor (cnf-1) genes encoding two toxins.
    RESULTS: The results showed that the usp gene was found in 78.40% of UPEC isolates, indicating that its prevalence was comparable to that found in a previous study in Japan. The two or three orfUs were also associated with the usp gene in this study. All the PAIusp subtypes observed in Japan were present in this study, while subtype IIa was the most common in both studies. The usp gene was observed in a higher percentage of isolates when compared with α-hly and cnf-1 genes.
    CONCLUSIONS: The findings in Japan and Sabah, East Malaysia, were similar, indicating that PAIusp subtyping is applicable to the characterization of UPEC strains epidemiologically elsewhere in the world.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  16. Palasubramaniam S, Muniandy S, Navaratnam P
    J Microbiol Immunol Infect, 2009 Apr;42(2):129-33.
    PMID: 19597644
    In addition to beta-lactamase production, loss of porins confers resistance to extended-spectrum beta-lactams in Klebsiella pneumoniae and Escherichia coli infection. This study describes the detection of SHV-12 extended-spectrum beta-lactamase (ESBL) subtype and the loss of OmpK35 porin in 4 strains of K. pneumoniae and E. coli.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  17. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Microbiol Immunol Infect, 2016 Aug;49(4):591-4.
    PMID: 26212311 DOI: 10.1016/j.jmii.2015.06.002
    The putative pathogenicity island (PAI) containing the uropathogenic specific protein (usp) gene and three small open reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins is widely distributed among uropathogenic Escherichia coli (UPEC) strains. This PAI was designated as PAIusp. Sequencing analysis of PAIusp has revealed that the usp gene can be divided into two types - uspI and uspII - based on sequence variation at the 3' terminal region and the number and position of orfUs differ from strain to strain. Based on usp gene types and orfU sequential patterns, PAIusp can be divided into four subtypes. Subtyping of PAIusp is a useful method to characterize UPEC strains. In this study, we developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to differentiate usp gene types. This method could correctly identify the usp gene type in usp-positive UPEC strains in our laboratory.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  18. Wong CS, Cheah FC
    J Pediatr Surg, 2012 Dec;47(12):2336-40.
    PMID: 23217901 DOI: 10.1016/j.jpedsurg.2012.09.029
    Cephalhematoma is normally a self-limiting condition affecting 1%-2% of live births, especially following instrumental forceps delivery. The sub-periosteal bleed is characteristically limited by the cranial sutures. Although benign in most instances, this condition may, in a small proportion of cases, be complicated by hyperbilirubinemia or scalp infection. We describe a case of cephalhematoma in a newborn infant infected with Escherichia coli resulting in an extensive deep seated scalp abscess. The infection was also systemic causing E. coli septicemia and initial assessment assumed local extension including bone and meningeal to cause skull osteomyelitis and meningitis respectively. Further investigations and multiple-modality imaging with ultrasound, CT scan and bone scintigraphy outlined the involvement as limited to the scalp, resulting in a shorter antibiotic treatment period and earlier discharge from hospital. The infant recovered well with parenteral antibiotics, saucerization of the abscess and a later skin grafting procedure.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
  19. Lau GL, Sieo CC, Tan WS, Ho YW
    J Sci Food Agric, 2012 Oct;92(13):2657-63.
    PMID: 22505020 DOI: 10.1002/jsfa.5683
    Colibacillosis is one of the main causes of economic loss in the poultry industry worldwide. Although antibiotics have been used to control this infection, the emergence of antibiotic-resistant bacteria poses a threat to animal and human health. Phage therapy has been reported as one of the potential alternative methods to control bacterial infections. However, efficient phage therapy is highly dependent on the characteristics of the phage isolated. In the present study the characteristics of a lytic phage, ØEC1, which was found to be effective against the causative agent of colibacillosis in chickens in a previous in vivo study, are reported.
    Matched MeSH terms: Escherichia coli Infections/microbiology
  20. Ho WS, Balan G, Puthucheary S, Kong BH, Lim KT, Tan LK, et al.
    Microb Drug Resist, 2012 Aug;18(4):408-16.
    PMID: 22394084 DOI: 10.1089/mdr.2011.0222
    The emergence of Escherichia coli resistant to extended-spectrum cephalosporins (ESCs) is of concern as ESC is often used to treat infections by Gram-negative bacteria. One-hundred and ten E. coli strains isolated in 2009-2010 from children warded in a Malaysian tertiary hospital were analyzed for their antibiograms, carriage of extended-spectrum beta-lactamase (ESBL) and AmpC genes, possible inclusion of the beta-lactamase genes on an integron platform, and their genetic relatedness. All E. coli strains were sensitive to carbapenems. About 46% of strains were multidrug resistant (MDR; i.e., resistant to ≥3 antibiotic classes) and almost half (45%) were nonsusceptible to ESCs. Among the MDR strains, high resistance rates were observed for ampicillin (98%), tetracycline (75%), and trimethoprim/sulfamethoxazole (73%). Out of 110 strains, bla(TEM-1) (49.1%), bla(CTX-M) (11.8%), and bla(CMY-2) (6.4%) were detected. Twenty-one strains were ESBL producers. CTX-M-15 was the predominant CTX-M variant found and this is the first report of a CTX-M-27-producing E. coli strain from Malaysia. Majority (3.1%) of the strains harbored class 1 integron-encoded integrases with a predominance of aadA and dfr genes within the integron variable region. No gene cassette encoding ESBL genes was found and integrons were not significantly associated with ESBL or non-ESBL producers. Possible clonal expansion was observed for few CTX-M-15-positive strains but the O25-ST131 E. coli clone known to harbor CTX-M-15 was not detected while CMY-2-positive strains were genetically diverse.
    Matched MeSH terms: Escherichia coli Infections/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links