METHODS: A literature search was conducted with the use of three online databases namely, Web of Science, Scopus, and ScienceDirect. Developed keywords strategy was used to include only the relevant articles. A Population Intervention Comparison Outcomes (PICO) strategy was used to develop the inclusion and exclusion criteria. Image quality was analyzed quantitatively based on peak signal-noise-ratio (PSNR), Mean Squared Error (MSE), Absolute Mean Brightness Error (AMBE), Entropy, and Contrast Improvement Index (CII) values.
RESULTS: Nine studies with four types of image enhancement techniques were included in this study. Two studies used histogram-based, three studies used frequency-based, one study used fuzzy-based and three studies used filter-based. All studies reported PSNR values whilst only four studies reported MSE, AMBE, Entropy and CII values. Filter-based was the highest PSNR values of 78.93, among other types. For MSE, AMBE, Entropy, and CII values, the highest were frequency-based (7.79), fuzzy-based (93.76), filter-based (7.92), and frequency-based (6.54) respectively.
CONCLUSION: In summary, image quality for each image enhancement technique is varied, especially for breast cancer detection. In this study, the frequency-based of Fast Discrete Curvelet Transform (FDCT) via the UnequiSpaced Fast Fourier Transform (USFFT) shows the most superior among other image enhancement techniques.