Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Nordin JA, Prajitno DH, Saidin S, Nur H, Hermawan H
    PMID: 25842138 DOI: 10.1016/j.msec.2015.03.019
    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis.
    Matched MeSH terms: Friction
  2. Chan, C.K., Goh, J.H., Ng, W.M., Kwan, M.K., Merican, A.M., Soong, K.L.
    Malays Orthop J, 2010;4(2):40-43.
    MyJurnal
    A 20- year-old female student was involved in a motor vehicle accident. She sustained a severe friction injury to the left knee that resulted in considerable soft tissue and bone loss. There was also damage to the knee extensor mechanism, tibialis anterior muscle, femoral trochlea, the anterior half of the tibial plateau extending distally to the proximal tibia and skin. However, there was no crushing of the limb or resultant neurovascular deficit but cancellous bone and the remainder of the joint were exposed. Repeated surgical debridement was performed and was followed by covering of the soft tissue using a latissimus dorsi free flap and skin grafts. The bony defect was reconstituted with antibiotic bone cement to prevent flap adherence and shrinkage, enhance stability and prevent fracture. The cement was later removed at the time of arthrodesis at which time an ipsilateral double barrel vascularised fibular graft supplemented with autogenously cancellous bone and a ring fixator was used. Computer tomography confirmed union at three months post procedure. The fixator was then removed and a tibialis posterior transfer was performed.
    Matched MeSH terms: Friction
  3. Federle W, Baumgartner W, Hölldobler B
    J Exp Biol, 2004 Jan;207(Pt 1):67-74.
    PMID: 14638834
    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.
    Matched MeSH terms: Friction
  4. Singh TS, Yusoff AH, Chian YK
    Spine (Phila Pa 1976), 2015 Aug 1;40(15):E866-72.
    PMID: 25996539 DOI: 10.1097/BRS.0000000000000985
    In vitro animal cadaveric study.
    Matched MeSH terms: Friction*
  5. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2015;10(5):e0122663.
    PMID: 25933066 DOI: 10.1371/journal.pone.0122663
    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
    Matched MeSH terms: Friction
  6. Roberts AD, Brackley CA
    J Dent, 1996 Sep;24(5):339-43.
    PMID: 8916648
    OBJECTIVES: A survey of general dental practitioners and dental surgery assistants was carried out to ascertain their preferences and opinions on powder-free hydrogel-coated gloves compared with starch-powdered gloves. The aim was to relate the survey findings to laboratory measurements of the frictional characteristics of glove inner surfaces and their water absorptive capability.

    METHODS: The survey was carried out using a questionnaire given to local dental practitioners. Glove friction and water absorption measurements were made using specially designed equipment.

    RESULTS: The survey showed that a selected group of dentist and dental surgery assistants preferred hydrogel-coated gloves, particularly for damp donning, durability and long-term wear comfort. Laboratory measurements showed that the hydrogel coating gave a low friction coefficient against damp skin. The coating was durable, and absorbed water more readily than other treatments.

    CONCLUSION: A survey of dental practitioners and dental surgery assistants and laboratory measurements indicates that hydrogel-coated gloves have superior properties, and are preferred to other non-sterile glove types.

    Matched MeSH terms: Friction
  7. Yasmin F, Tamrin KF, Sheikh NA, Barroy P, Yassin A, Khan AA, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803364 DOI: 10.3390/ma14051311
    Laser-assisted high speed milling is a subtractive machining method that employs a laser to thermally soften a difficult-to-cut material's surface in order to enhance machinability at a high material removal rate with improved surface finish and tool life. However, this machining with high speed leads to high friction between workpiece and tool, and can result in high temperatures, impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting fluid on surface roughness and tool's flank wear using response surface methodology (RSM) while machining of 316 stainless steel. In order to observe the comparison, the experiments with same machining parameters are conducted with conventional cutting fluid. The prepared water-soluble sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore, in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and flank wear and showed good agreement between observations and predictions.
    Matched MeSH terms: Friction
  8. Razzaq L, Mujtaba MA, Soudagar MEM, Ahmed W, Fayaz H, Bashir S, et al.
    J Environ Manage, 2021 Mar 15;282:111917.
    PMID: 33453625 DOI: 10.1016/j.jenvman.2020.111917
    This study investigated the engine performance and emission characteristics of biodiesel blends with combined Graphene oxide nanoplatelets (GNPs) and 10% v/v dimethyl carbonate (DMC) as fuel additives as well as analysed the tribological characteristics of those blends. 10% by volume DMC was mixed with 30% palm oil biodiesel blends with diesel. Three different concentrations (40, 80 and 120 ppm) of GNPs were added to these blends via the ultrasonication process to prepare the nanofuels. Sodium dodecyl sulphate (SDS) surfactant was added to improve the stability of these blends. GNPs were characterised using Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR), while the viscosity of nanofuels was investigated by rheometer. UV-spectrometry was used to determine the stability of these nanoplatelets. A ratio of 1:4 GNP: SDS was found to produce maximum stability in biodiesel. Performance and emissions characteristics of these nanofuels have been investigated in a four-stroke compression ignition engine. The maximum reduction in BSFC of 5.05% and the maximum BTE of 22.80% was for B30GNP40DMC10 compared to all other tested blends. A reduction in HC (25%) and CO (4.41%) were observed for B30DMC10, while a reduction in NOx of 3.65% was observed for B30GNP40DMC10. The diesel-biodiesel fuel blends with the addition of GNP exhibited a promising reduction in the average coefficient of friction 15.05%, 8.68% and 3.61% for 120, 80 and 40 ppm concentrations compared to B30. Thus, combined GNP and DMC showed excellent potential for utilisation in diesel engine operation.
    Matched MeSH terms: Friction
  9. Ishak MI, Dobryden I, Martin Claesson P, Briscoe WH, Su B
    J Colloid Interface Sci, 2021 Feb 01;583:414-424.
    PMID: 33011410 DOI: 10.1016/j.jcis.2020.09.038
    Frictional and nanomechanical properties of nanostructured polymer surfaces are important to their technological and biomedical applications. In this work, poly(ethylene terephthalate) (PET) surfaces with a periodic distribution of well-defined nanopillars were fabricated through an anodization/embossing process. The apparent surface energy of the nanopillared surfaces was evaluated using the Fowkes acid-base approach, and the surface morphology was characterized using scanning electron microscope (SEM) and atomic force microscope (AFM). The normal and lateral forces between a silica microparticle and these surfaces were quantified using colloidal probe atomic force microscopy (CP-AFM). The friction-load relationship followed Amonton's first law, and the friction coefficient appeared to scale linearly with the nanopillar height. Furthermore, all the nanopillared surfaces showed pronounced frictional instabilities compared to the smooth sliding friction loop on the flat control. Performing the stick-slip amplitude coefficient (SSAC) analysis, we found a correlation between the frictional instabilities and the nanopillars density, pull-off force and work of adhesion. We have summarised the dependence of the nanotribological properties on such nanopillared surfaces on five relevant parameters, i.e. pull-off force fp, Amontons' friction coefficient μ, RMS roughness Rq, stick-slip amplitude friction coefficient SSAC, and work of adhesion between the substrate and water Wadh in a radar chart. Whilst demonstrating the complexity of the frictional behaviour of nanopillared polymer surfaces, our results show that analyses of multiparametric nanotribological properties of nanostructured surfaces should go beyond classic Amontons' laws, with the SSAC more representative of the frictional properties compared to the friction coefficient.
    Matched MeSH terms: Friction
  10. Ibrahim MD, Amran SNA, Yunos YS, Rahman MRA, Mohtar MZ, Wong LK, et al.
    Appl Bionics Biomech, 2018;2018:7854321.
    PMID: 29853998 DOI: 10.1155/2018/7854321
    The skin of a fast swimming shark reveals riblet structures that help reduce the shark's skin friction drag, enhancing its efficiency and speed while moving in the water. Inspired by the structure of the shark skin denticles, our team has carried out a study as an effort in improving the hydrodynamic design of marine vessels through hull design modification which was inspired by this riblet structure of shark skin denticle. Our study covers on macroscaled design modification. This is an attempt to propose an alternative for a better economical and practical modification to obtain a more optimum cruising characteristics for marine vessels. The models used for this study are constructed using computer-aided design (CAD) software, and computational fluid dynamic (CFD) simulations are then carried out to predict the effectiveness of the hydrodynamic effects of the biomimetic shark skins on those models. Interestingly, the numerical calculated results obtained show that the presence of biomimetic shark skin implemented on the vessels give about 3.75% reduction of drag coefficient as well as reducing up to 3.89% in drag force experienced by the vessels. Theoretically, as force drag can be reduced, it can lead to a more efficient vessel with a better cruising speed. This will give better impact to shipping or marine industries around the world. However, it can be suggested that an experimental procedure is best to be conducted to verify the numerical result that has been obtained for further improvement on this research.
    Matched MeSH terms: Friction
  11. Leman, A.M., Che Wan Izzudin, Md Zin Ibrahim, Dafit Feriyanto
    MyJurnal
    Brake pad apparatus is designed for help student and instructor in teaching and learning application. The objective
    of this research is to differentiate the pressure effect and braking temperature condition of different pad. This apparatus
    also aimed for learning the safety car and motorcycle braking system. This apparatus can to compare with theoretical
    calculation in order to approve that this apparatus is useful. The main concept in this apparatus is thermocouple use
    to detect the temperature gain while braking process. Speed motor controller used for set the angular velocity of the
    motor in braking process. Pressure applied at brake pedal detected by pressure gauge and data logger function as a
    connector. This apparatus also designed based on valid data for average of teenager in Malaysia which made on a
    sample university student. Result show that the apparatus can function effectively by defines the different temperature
    when applied the different pressure and different pad. Pad C shows the 880C for thermocouple 1 and 790C for
    thermocouple 2 at the 20 psi and infrared thermometer show 1130C for pad C. Graph from calculation shows that the
    pad A have 216.480C at 1000 rpm which have low temperature than pad B, C and D. high efficiency of friction and
    pressure applied will cause more heat generate than low coefficient of friction and pressure applied.
    Matched MeSH terms: Friction
  12. AHMAD SHAHIR BIN JAMALUDIN, ABDULLAH BIN YASSIN
    Sains Malaysiana, 2013;42:1727-1733.
    Invention of milling combined laser sintering system (MLSS) is able to reduce the mould manufacturing time and improve the mould accuracy. Thus, more study is needed to increase the understanding for the laser sintered material machining characteristic to gain benefit from the invention of MLSS. This paper clarified the analysis of laser sintered material machinability with the application of Finite Element Method (FEM). Mild steel AISI1055 was applied in developing the Finite Element model in this study due to its popularity in machinability test and adequate level of data availability. 2D orthogonal cutting was employed on edge design tools with updated Lagrangian coupled thermo mechanical plane strain model. Adaptive meshing, tool edge radius and various types of friction models were assigned to obtain efficient simulations and precise cutting results. Cutting force and cutting-edge temperature estimated by Finite Element Method are validated against corresponding experimental values by previous researchers. In the study, cutting force increases when radial depth increases and lowest error acquired when the shear friction factor of 0.8 was applied. Machining simulation for laser sintered materials estimated lower cutting force compared with mild steel AISI1055 due to lower Young modulus. Higher cutting temperature estimated for machining simulation laser sintered material compared with machining simulation mild steel AISI1055 due to its low thermal conductivity.
    Matched MeSH terms: Friction
  13. Siti Fazlili Abdullah, Shahidan Radiman, Muhammad Azmi Abdul Hamid, Noor Baa’yah Ibrahim
    Sains Malaysiana, 2008;37:233-237.
    Oleic acid (OA) capped wolfram (VI) oxide, WO3 nanoparticles were chemically synthesized and characterized by means of Fourier Transform-Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The tribological properties of the capped WO3 nanoparticles as an additive in base oils were investigated using a four-ball machine. Results show that OA-capped WO3 nanoparticles are able to prevent water adsorption and capable of being dispersed stable in organic solvents which is base oils. The as-prepared capped WO3 nanoparticles have an average size of 15 nm. In addition, OA-capped WO3 nanoparticles as an additive in base oils perform good anti-wear (AW) and anti-friction (AF) properties owing to the formation of a boundary film.
    Matched MeSH terms: Friction
  14. Tamjidy M, Baharudin BTHT, Paslar S, Matori KA, Sulaiman S, Fadaeifard F
    Materials (Basel), 2017 May 15;10(5).
    PMID: 28772893 DOI: 10.3390/ma10050533
    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
    Matched MeSH terms: Friction
  15. Sadri R, Hosseini M, Kazi SN, Bagheri S, Abdelrazek AH, Ahmadi G, et al.
    J Colloid Interface Sci, 2018 Jan 01;509:140-152.
    PMID: 28898734 DOI: 10.1016/j.jcis.2017.07.052
    In this study, we synthesized covalently functionalized graphene nanoplatelet (GNP) aqueous suspensions that are highly stable and environmentally friendly for use as coolants in heat transfer systems. We evaluated the heat transfer and hydrodynamic properties of these nano-coolants flowing through a horizontal stainless steel tube subjected to a uniform heat flux at its outer surface. The GNPs functionalized with clove buds using the one-pot technique. We characterized the clove-treated GNPs (CGNPs) using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We then dispersed the CGNPs in distilled water at three particle concentrations (0.025, 0.075 and 0.1wt%) in order to prepare the CGNP-water nanofluids (nano-coolants). We used ultraviolet-visible (UV-vis) spectroscopy to examine the stability and solubility of the CGNPs in the distilled water. There is significant enhancement in thermo-physical properties of CGNPs nanofluids relative those for distilled water. We validated our experimental set-up by comparing the friction factor and Nusselt number for distilled water obtained from experiments with those determined from empirical correlations, indeed, our experimental set-up is reliable and produces results with reasonable accuracy. We conducted heat transfer experiments for the CGNP-water nano-coolants flowing through the horizontal heated tube in fully developed turbulent condition. Our results are indeed promising since there is a significant enhancement in the Nusselt number and convective heat transfer coefficient for the CGNP-water nanofluids, with only a negligible increase in the friction factor and pumping power. More importantly, we found that there is a significant increase in the performance index, which is a positive indicator that our nanofluids have potential to substitute conventional coolants in heat transfer systems because of their overall thermal performance and energy savings benefits.
    Matched MeSH terms: Friction
  16. Ali F, Khan I, Shafie S
    PLoS One, 2014;9(2):e85099.
    PMID: 24551033 DOI: 10.1371/journal.pone.0085099
    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.
    Matched MeSH terms: Friction
  17. Mabood F, Khan WA, Ismail AI
    PLoS One, 2013;8(12):e83581.
    PMID: 24376722 DOI: 10.1371/journal.pone.0083581
    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
    Matched MeSH terms: Friction
  18. Ali F, Khan I, Samiulhaq, Shafie S
    PLoS One, 2013;8(6):e65223.
    PMID: 23840321 DOI: 10.1371/journal.pone.0065223
    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables.
    Matched MeSH terms: Friction
  19. Bachok N, Ishak A, Pop I
    PLoS One, 2013;8(4):e60766.
    PMID: 23577156 DOI: 10.1371/journal.pone.0060766
    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
    Matched MeSH terms: Friction
  20. Tamadon A, Pons DJ, Clucas D, Sued K
    Materials (Basel), 2019 Oct 01;12(19).
    PMID: 31581446 DOI: 10.3390/ma12193215
    One of the difficulties with bobbin friction stir welding (BFSW) has been the visualisation of microstructure, particularly grain boundaries, and this is especially problematic for materials with fine grain structure, such as AA6082-T6 aluminium as here. Welds of this material were examined using optical microscopy (OM) and electron backscatter diffraction (EBSD). Results show that the grain structures that form depend on a complex set of factors. The motion of the pin and shoulder features transports material around the weld, which induces shear. The shear deformation around the pin is non-uniform with a thermal and strain gradient across the weld, and hence the dynamic recrystallisation (DRX) processes are also variable, giving a range of observed polycrystalline and grain boundary structures. Partial DRX was observed at both hourglass boundaries, and full DRX at mid-stirring zone. The grain boundary mapping showed the formation of low-angle grain boundaries (LAGBs) at regions of high shear as a consequence of thermomechanical nature of the process.
    Matched MeSH terms: Friction
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links