Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Mohamad Hidayad Ahmad Kamal, Anati Ali, Sharidan Shafie
    MATEMATIKA, 2019;35(2):260-270.
    MyJurnal
    The three dimensional free convection boundary layer flow near a stagnation point region is embedded in viscous nanofluid with the effect of g-jitter is studied in this paper. Copper (Cu) and aluminium oxide (Al2O3) types of water base nanofluid are cho- sen with the constant Prandtl number, Pr=6.2. Based on Tiwari-Das nanofluid model, the boundary layer equation used is converted into a non-dimensional form by adopting non- dimensional variables and is solved numerically by engaging an implicit finite-difference scheme known as Keller-box method. Behaviors of fluid flow such as skin friction and Nusset number are studied by the controlled parameters including oscillation frequency, amplitude of gravity modulation and nanoparticles volume fraction. The reduced skin friction and Nusset number are presented graphically and discussed for different values of principal curvatures ratio at the nodal point. The numerical results shows that, in- crement occurs in the values of Nusset number with the presence of solid nanoparticles together with the values of the skin friction. It is worth mentioning that for the plane stagnation point there is an absence of reduced skin friction along the y-direction where as for axisymmetric stagnation point, the reduced skin friction for both directions are the same. As nanoparticles volume fraction increased, the skin friction increased as well as the Nusset number. The results, indicated that skin frictions of copper are found higher than aluminium oxide.
    Matched MeSH terms: Friction
  2. Naganthran K, Nazar R, Pop I
    Sci Rep, 2016;6:24632.
    PMID: 27091085 DOI: 10.1038/srep24632
    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.
    Matched MeSH terms: Friction
  3. Md. Faisal Md. Basir, Uddin M, Md. Ismail A
    Sains Malaysiana, 2017;46:327-333.
    Induced magnetic field stagnation point flow for unsteady two-dimensional laminar forced convection of water based nanofluid containing microorganisms along a vertical plate has been investigated. We have incorporated zero mass flux boundary condition to get physically realistic results. The boundary layer equations with three independent variables are transformed into a system of ordinary differential equations by using appropriate similarity transformations. The derived equations are then solved numerically by using Maple which use the fourth-fifth order Runge-Kutta-Fehlberg algorithm to solve the system of similarity differential equations. The effects of the governing parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction, density of motile microorganisms, skin friction coefficient, local Nusselt number and motile density of microorganisms transfer rate are illustrated graphically and tabular form. It is found that the controlling parameters strongly affect the fluid flow and heat transfer characteristics. We compare our numerical results with published results for some limiting cases and found excellent agreement.
    Matched MeSH terms: Friction
  4. Fasihah Zulkiflee, Ahmad Qushairi Mohamad, Sharidan Shafie, Arshad Khan
    MATEMATIKA, 2019;35(2):117-127.
    MyJurnal
    Free convection flow in a boundary layer region is a motion that results from the interaction of gravity with density differences within a fluid. These differences occur due to temperature or concentration gradients or due to their composition. Studies per- taining free convection flows of incompressible viscous fluids have received much attention in recent years both theoretically (exact or approximate solutions) and experimentally. The situation where the heat be transported to the convective fluid via a bounding sur- face having finite heat capacity is known as Newtonian heating (or conjugate convective flows). In this paper, the unsteady free convection flow of an incompressible viscous fluid between two parallel plates with Newtonian heating is studied. Appropriate non- dimensional variables are used to reduce the dimensional governing equations along with imposed initial and boundary conditions into dimensionless forms. The exact solutions for velocity and temperature are obtained using the Laplace transform technique. The corresponding expressions for skin friction and Nusselt number are also calculated. The graphical results are displayed to illustrate the influence of various embedded parameters such as Newtonian heating parameter and Grashof number. The results show that the effect of Newtonian heating parameter increases the Nusselt number but reduces the skin friction.
    Matched MeSH terms: Friction
  5. Hussanan A, Zuki Salleh M, Tahar RM, Khan I
    PLoS One, 2014;9(10):e108763.
    PMID: 25302782 DOI: 10.1371/journal.pone.0108763
    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
    Matched MeSH terms: Friction
  6. Siti Fazlili Abdullah, Shahidan Radiman, Muhammad Azmi Abdul Hamid, Noor Baa’yah Ibrahim
    Sains Malaysiana, 2008;37:233-237.
    Oleic acid (OA) capped wolfram (VI) oxide, WO3 nanoparticles were chemically synthesized and characterized by means of Fourier Transform-Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The tribological properties of the capped WO3 nanoparticles as an additive in base oils were investigated using a four-ball machine. Results show that OA-capped WO3 nanoparticles are able to prevent water adsorption and capable of being dispersed stable in organic solvents which is base oils. The as-prepared capped WO3 nanoparticles have an average size of 15 nm. In addition, OA-capped WO3 nanoparticles as an additive in base oils perform good anti-wear (AW) and anti-friction (AF) properties owing to the formation of a boundary film.
    Matched MeSH terms: Friction
  7. Bayat M, Alarifi IM, Khalili AA, El-Bagory TMAA, Nguyen HM, Asadi A
    Sci Rep, 2019 Oct 25;9(1):15317.
    PMID: 31653877 DOI: 10.1038/s41598-019-51450-z
    A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.
    Matched MeSH terms: Friction
  8. Siti Nur Haseela Izani, Anati Ali
    MATEMATIKA, 2019;35(2):187-200.
    MyJurnal
    The heat and mass transfer of steady magnetohydrodynamics of dusty Jeffrey fluid past an exponentially stretching sheet in the presence of thermal radiation have been investigated. The main purpose of this study is to conduct a detailed analysis of flow behaviour of suspended dust particles in non-Newtonian fluid. The governing equations hav been converted into dimensionless form, and then solved numerically via the Keller-box method. The expression of Sherwood number, Nusselt number and skin friction have been evaluated, and then displayed in tabular forms. Velocity, temperature and concentration profiles are presented graphically. It is observed that large value of dust particles mass concentration parameter has reduced the flow velocity significantly. Increase in radiation parameter enhances the temperature, whereas the increment in Schmidt number parameter reduces the concentration.
    Matched MeSH terms: Friction
  9. Hussain H. Al-Kayiem, Iylia Elena Abdul Jamil
    MyJurnal
    In the moving layer of particles with variable concentration, the shear estimation is not directly predictable and there is no existing clear mathematical or empirical formula to achieve this objective. This paper presents a developed approach to estimate the shear forces in a flow having suspended and moving layers of solid particles in liquid flow. The two-layer approach was taken whereby the flow consisting of one upper suspended layer of particles in the liquid, and the bottom layer was the moving bed of particles. In the present work, the method of finding the force acting on the pipe wall by the particles in the layer, termed as the ‘dry force’, was presented using a “pseudo hydrostatic pressure” method. To attain the equation for the dry force, a mathematical approach is taken with the assumptions that the flow is horizontal, two-phase pipe flow (solid in Newtonian liquid), incompressible and it is at steady-state. The analysis was conducted considering various particles densities, various concentrations in the suspended layer and different thicknesses of the moving bed. Changing the concentration in the suspended layer from 0.00001 up to 0.001 didn’t showed significant changes in the dry force evaluation. The dry friction force is increasing with increasing moving bed thickness. The developed mathematical model can be
    applicable in solving for the shear force in horizontal solid liquid two-phase flows.
    Matched MeSH terms: Friction
  10. Choudhury D, Vrbka M, Mamat AB, Stavness I, Roy CK, Mootanah R, et al.
    J Mech Behav Biomed Mater, 2017 08;72:192-199.
    PMID: 28500998 DOI: 10.1016/j.jmbbm.2017.05.011
    Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction.
    Matched MeSH terms: Friction*
  11. Salleh, N.M., Shauri, R.L.A., Nasir, K., Remeli, N.H., Kamal, M.M.
    MyJurnal
    In an earlier study, a three-fingered robot hand was developed for assembly work. Proportional Integral Derivative (PID) control was used to control the position of a DC micromotor measured by an encoder. However, PID control alone could not cater the nonlinearities due to friction of gears and varying loads applied to the finger. Therefore, in order to develop an intelligent control algorithm in future, the effects of varying PID gains need to be investigated to distinguish the optimal value that could produce the best transient response performance. This paper discusses the effect of varying PID gains on position transient response of the joint motor of robot hand through real-time experiments. Several ranges of KP, KI and KD were identified based on the required transient response parameters such as percentage overshoot (%OS), settling time (TS) of within 2%, steady state error (SSE) and rise time (TR). The gains are tuned across the range by a fixed interval with the tuning order starting from KP, KI and KD. It can be observed that the suitable ranges of PID are 0.3 to 0.5 for KP, 1.15 to 1.45 for KI and 0.10 to 0.14 for KD. Meanwhile, the optimum value of 0.4, 1.45 and 0.10 for KP, KI and KD respectively is found to produce 0 of % OS, 5.09 sec of TS and 2.48 sec of TR. Hence, the gains can be applied to the development of an improved position control using intelligent method for the robot hand in future works.
    Matched MeSH terms: Friction
  12. Firdaus Kamaruzaman, Siti Habibah Shafiai
    MyJurnal
    Lattice Boltzmann Model for Shallow Water Equation with Turbulence Modeling (LABSWETM) is used to study the flow patterns of sidewall friction effects. The lattice Boltzmann method (LBM) approach in recovery the macroscopic governing equation which is shallow water equation from the microscopic flow behavior of particle movement as described by kinetic theory is explored. With the solution of force term to be used in lattice Boltzmann equation, the boundary condition of LBM is explored. With the use of bed and wall friction coefficients, the importance of Manning’s coefficient in determining the outcome of flow patterns simulation is explained. For model verification, the model represents a straight channel with a circular cavity attached to it. The result of this simulation includes the water circulation patterns, cross-section of average velocity distribution, and water depth. For validation, the cross-sections of the model in term of velocity vectors are compared against alternative numerical and experimental data.
    Matched MeSH terms: Friction
  13. Ibrahim MR, Katman HY, Karim MR, Koting S, Mashaan NS
    ScientificWorldJournal, 2014;2014:240786.
    PMID: 24574875 DOI: 10.1155/2014/240786
    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.
    Matched MeSH terms: Friction*
  14. Ibrahim MD, Amran SNA, Yunos YS, Rahman MRA, Mohtar MZ, Wong LK, et al.
    Appl Bionics Biomech, 2018;2018:7854321.
    PMID: 29853998 DOI: 10.1155/2018/7854321
    The skin of a fast swimming shark reveals riblet structures that help reduce the shark's skin friction drag, enhancing its efficiency and speed while moving in the water. Inspired by the structure of the shark skin denticles, our team has carried out a study as an effort in improving the hydrodynamic design of marine vessels through hull design modification which was inspired by this riblet structure of shark skin denticle. Our study covers on macroscaled design modification. This is an attempt to propose an alternative for a better economical and practical modification to obtain a more optimum cruising characteristics for marine vessels. The models used for this study are constructed using computer-aided design (CAD) software, and computational fluid dynamic (CFD) simulations are then carried out to predict the effectiveness of the hydrodynamic effects of the biomimetic shark skins on those models. Interestingly, the numerical calculated results obtained show that the presence of biomimetic shark skin implemented on the vessels give about 3.75% reduction of drag coefficient as well as reducing up to 3.89% in drag force experienced by the vessels. Theoretically, as force drag can be reduced, it can lead to a more efficient vessel with a better cruising speed. This will give better impact to shipping or marine industries around the world. However, it can be suggested that an experimental procedure is best to be conducted to verify the numerical result that has been obtained for further improvement on this research.
    Matched MeSH terms: Friction
  15. Tamadon A, Pons DJ, Clucas D, Sued K
    Materials (Basel), 2019 Oct 01;12(19).
    PMID: 31581446 DOI: 10.3390/ma12193215
    One of the difficulties with bobbin friction stir welding (BFSW) has been the visualisation of microstructure, particularly grain boundaries, and this is especially problematic for materials with fine grain structure, such as AA6082-T6 aluminium as here. Welds of this material were examined using optical microscopy (OM) and electron backscatter diffraction (EBSD). Results show that the grain structures that form depend on a complex set of factors. The motion of the pin and shoulder features transports material around the weld, which induces shear. The shear deformation around the pin is non-uniform with a thermal and strain gradient across the weld, and hence the dynamic recrystallisation (DRX) processes are also variable, giving a range of observed polycrystalline and grain boundary structures. Partial DRX was observed at both hourglass boundaries, and full DRX at mid-stirring zone. The grain boundary mapping showed the formation of low-angle grain boundaries (LAGBs) at regions of high shear as a consequence of thermomechanical nature of the process.
    Matched MeSH terms: Friction
  16. Yeoh C, Lim G, Sathappan SS
    Malays Orthop J, 2015 Nov;9(3):68-70.
    PMID: 28611916 DOI: 10.5704/MOJ.1511.011
    We present the case of a 56-year old gentleman who presented with recalcitrant iliotibial band (ITB) friction syndrome which did not improve with various modalities of conservative treatment. Magnetic Resonance Imaging (MRI) of the affected knee did not show pathology typical of ITB friction syndrome. However, open exploration revealed a synovial cyst deep to the iliotibial band, abutting against the anterolateral capsule. The presence of distinctive clinical signs on physical examination should alert clinicians to consider knee synovial cyst as a differential diagnosis when dealing with recalcitrant ITB syndrome.
    Matched MeSH terms: Friction
  17. Setu SA, Dullens RP, Hernández-Machado A, Pagonabarraga I, Aarts DG, Ledesma-Aguilar R
    Nat Commun, 2015;6:7297.
    PMID: 26073752 DOI: 10.1038/ncomms8297
    Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems.
    Matched MeSH terms: Friction
  18. Nordin JA, Prajitno DH, Saidin S, Nur H, Hermawan H
    PMID: 25842138 DOI: 10.1016/j.msec.2015.03.019
    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis.
    Matched MeSH terms: Friction
  19. Najib N, Bachok N, Arifin NM, Ishak A
    Sci Rep, 2014;4:4178.
    PMID: 24569547 DOI: 10.1038/srep04178
    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.
    Matched MeSH terms: Friction
  20. Chan, C.K., Goh, J.H., Ng, W.M., Kwan, M.K., Merican, A.M., Soong, K.L.
    Malays Orthop J, 2010;4(2):40-43.
    MyJurnal
    A 20- year-old female student was involved in a motor vehicle accident. She sustained a severe friction injury to the left knee that resulted in considerable soft tissue and bone loss. There was also damage to the knee extensor mechanism, tibialis anterior muscle, femoral trochlea, the anterior half of the tibial plateau extending distally to the proximal tibia and skin. However, there was no crushing of the limb or resultant neurovascular deficit but cancellous bone and the remainder of the joint were exposed. Repeated surgical debridement was performed and was followed by covering of the soft tissue using a latissimus dorsi free flap and skin grafts. The bony defect was reconstituted with antibiotic bone cement to prevent flap adherence and shrinkage, enhance stability and prevent fracture. The cement was later removed at the time of arthrodesis at which time an ipsilateral double barrel vascularised fibular graft supplemented with autogenously cancellous bone and a ring fixator was used. Computer tomography confirmed union at three months post procedure. The fixator was then removed and a tibialis posterior transfer was performed.
    Matched MeSH terms: Friction
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links