Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Abba Y, Hassim H, Hamzah H, Ibrahim OE, Mohd Lila MA, Noordin MM
    Microb Pathog, 2017 Mar;104:17-27.
    PMID: 28062291 DOI: 10.1016/j.micpath.2017.01.003
    Boid inclusion body disease (BIBD) is a viral disease of boid snakes believed to be caused by reptarenavirus belonging to the family Arenaviridae. Unlike most mammalian arenaviruses, the reservoir host for reptarenavirus is still unknown. In this study, the pathological responses were evaluated in a mouse model for a period of 28 days. Blood and tissue samples (lung, liver, spleen, heart, kidney and brain) were collected for evaluation of hematology, biochemistry, histopathology and oxidative enzyme levels at six time points (1, 3, 7, 14, 21 and 28 days), after viral infection (2.0 × 10(6) pfu/mL) in the infected and normal saline in the control groups. An initial increase (p 
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  2. Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Azam M, et al.
    PLoS One, 2016;11(3):e0150137.
    PMID: 26963622 DOI: 10.1371/journal.pone.0150137
    Hydrogen sulphide (H2S) is an emerging molecule in many cardiovascular complications but its role in left ventricular hypertrophy (LVH) is unknown. The present study explored the effect of exogenous H2S administration in the regression of LVH by modulating oxidative stress, arterial stiffness and expression of cystathione γ lyase (CSE) in the myocardium. Animals were divided into four groups: Control, LVH, Control-H2S and LVH-H2S. LVH was induced by administering isoprenaline (5mg/kg, every 72 hours, S/C) and caffeine in drinking water (62mg/L) for 2 weeks. Intraperitoneal NaHS, 56μM/kg/day for 5 weeks, was given as an H2S donor. Myocardial expression of Cystathione γ lyase (CSE) mRNA was quantified using real time polymerase chain reaction (qPCR).There was a 3 fold reduction in the expression of myocardial CSE mRNA in LVH but it was up regulated by 7 and 4 fold in the Control-H2S and LVH-H2S myocardium, respectively. Systolic blood pressure, mean arterial pressure, pulse wave velocity were reduced (all P<0.05) in LVH-H2S when compared to the LVH group. Heart, LV weight, myocardial thickness were reduced while LV internal diameter was increased (all P<0.05) in the LVH-H2S when compared to the LVH group. Exogenous administration of H2S in LVH increased superoxide dismutase, glutathione and total antioxidant capacity but significantly reduced (all P<0.05) plasma malanodialdehyde in the LVH-H2S compared to the LVH group. The renal cortical blood perfusion increased by 40% in LVH-H2S as compared to the LVH group. Exogenous administration of H2S suppressed the progression of LVH which was associated with an up regulation of myocardial CSE mRNA/ H2S and a reduction in pulse wave velocity with a blunting of systemic hemodynamic. This CSE/H2S pathway exhibits an antihypertrophic role by antagonizing the hypertrophic actions of angiotensin II(Ang II) and noradrenaline (NA) but attenuates oxidative stress and improves pulse wave velocity which helps to suppress LVH. Exogenous administration of H2S augmented the reduced renal cortical blood perfusion in the LVH state.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic/drug effects*
  3. Ahmad N, Hashim R, Shukor S, Mohd Khalid KN, Shamsudin F, Hussin H
    J Med Microbiol, 2013 May;62(Pt 5):804-806.
    PMID: 23449878 DOI: 10.1099/jmm.0.050781-0
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  4. Ahmad TA, Jubri Z, Rajab NF, Rahim KA, Yusof YA, Makpol S
    Molecules, 2013 Feb 11;18(2):2200-11.
    PMID: 23434870 DOI: 10.3390/molecules18022200
    The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05). Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05). Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic/drug effects; Gene Expression Regulation, Enzymologic/radiation effects
  5. Al-Nema MY, Gaurav A
    Curr Top Med Chem, 2019;19(7):555-564.
    PMID: 30931862 DOI: 10.2174/1568026619666190401113803
    BACKGROUND: Phosphodiesterases (PDEs) are enzymes that play a key role in terminating cyclic nucleotides signalling by catalysing the hydrolysis of 3', 5'- cyclic adenosine monophosphate (cAMP) and/or 3', 5' cyclic guanosine monophosphate (cGMP), the second messengers within the cell that transport the signals produced by extracellular signalling molecules which are unable to get into the cells. However, PDEs are proteins which do not operate alone but in complexes that made up of a many proteins.

    OBJECTIVE: This review highlights some of the general characteristics of PDEs and focuses mainly on the Protein-Protein Interactions (PPIs) of selected PDE enzymes. The objective is to review the role of PPIs in the specific mechanism for activation and thereby regulation of certain biological functions of PDEs.

    METHODS: The article discusses some of the PPIs of selected PDEs as reported in recent scientific literature. These interactions are critical for understanding the biological role of the target PDE.

    RESULTS: The PPIs have shown that each PDE has a specific mechanism for activation and thereby regulation a certain biological function.

    CONCLUSION: Targeting of PDEs to specific regions of the cell is based on the interaction with other proteins where each PDE enzyme binds with specific protein(s) via PPIs.

    Matched MeSH terms: Gene Expression Regulation, Enzymologic/physiology*
  6. Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP
    J Plant Physiol, 2011 Jul 01;168(10):1106-13.
    PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007
    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  7. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2020 Apr;190(4):1438-1456.
    PMID: 31782088 DOI: 10.1007/s12010-019-03182-z
    In this study, the effects of limited and excess phosphate on biomass content, oil content, fatty acid profile and the expression of three fatty acid desaturases in Messastrum gracile SE-MC4 were determined. It was found that total biomass (0.67-0.83 g L-1), oil content (30.99-38.08%) and the duration for cells to reach stationary phase (25-27 days) were not considerably affected by phosphate limitation. However, excess phosphate slightly reduced total biomass and oil content to 0.50 g L-1 and 25.36% respectively. The dominant fatty acids in M. gracile, pamitic acid (C16:0) and oleic acid (C18:1) which constitute more than 81% of the total fatty acids remained relatively high and constant across all phosphate concentrations. Reduction of phosphate concentration to 25% and below significantly increased total MUFA, whereas increasing phosphate concentration to ≥ 50% and ≥ 100% significantly increased total SFA and PUFA content respectively. The expression of omega-3 fatty acid desaturase (ω-3 FADi1, ω-3 FADi2) and omega-6 fatty acid desaturase (ω-6 FAD) was increased under phosphate limitation, especially at ≤ 12.5% phosphate, whereas levels of streoyl-ACP desaturase (SAD) transcripts were relatively unchanged across all phosphate concentrations. The first isoform of ω-3 FAD (ω-3 FADi) displayed a binary upregulation under limited (≤ 12.5%) and excess (200%) phosphate. The expression of ω-6 FAD, ω-3 FAD and SAD were inconsistent with the accumulation of oleic acid (C18:1), linoleic acid (C18:2) and alpha-linolenic acid (C18:3), suggesting that these genes may be regulated indirectly by phosphate availability via post-transcriptional or post-translational mechanisms.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  8. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    World J Microbiol Biotechnol, 2020 Jan 07;36(1):17.
    PMID: 31912247 DOI: 10.1007/s11274-019-2790-y
    In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  9. Ariffin NM, Islahudin F, Kumolosasi E, Makmor-Bakry M
    Parasitol Res, 2019 Mar;118(3):1011-1018.
    PMID: 30706164 DOI: 10.1007/s00436-019-06210-3
    Eliminating the Plasmodium vivax malaria parasite infection remains challenging. One of the main problems is its capacity to form hypnozoites that potentially lead to recurrent infections. At present, primaquine is the only drug used for the management of hypnozoites. However, the effects of primaquine may differ from one individual to another. The aim of this work is to determine new measures to reduce P. vivax recurrence, through primaquine metabolism and host genetics. A genetic study of MAO-A, CYP2D6, CYP1A2 and CYP2C19 and their roles in primaquine metabolism was undertaken of healthy volunteers (n = 53). The elimination rate constant (Ke) and the metabolite-to-parent drug concentration ratio (Cm/Cp) were obtained to assess primaquine metabolism. Allelic and genotypic analysis showed that polymorphisms MAO-A (rs6323, 891G>T), CYP2D6 (rs1065852, 100C>T) and CYP2C19 (rs4244285, 19154G>A) significantly influenced primaquine metabolism. CYP1A2 (rs762551, -163C>A) did not influence primaquine metabolism. In haplotypic analysis, significant differences in Ke (p = 0.00) and Cm/Cp (p = 0.05) were observed between individuals with polymorphisms, GG-MAO-A (891G>T), CT-CYP2D6 (100C>T) and GG-CYP2C19 (19154G>A), and individuals with polymorphisms, TT-MAO-A (891G>T), TT-CYP2D6 (100C>T) and AA-CYP2C19 (19154G>A), as well as polymorphisms, GG-MAO-A (891G>T), TT-CYP2D6 (100C>T) and GA-CYP2C19 (19154G>A). Thus, individuals with CYP2D6 polymorphisms had slower primaquine metabolism activity. The potential significance of genetic roles in primaquine metabolism and exploration of these might help to further optimise the management of P. vivax infection.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic/drug effects
  10. Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Alinejaid T, Othman RY, et al.
    Fish Shellfish Immunol, 2011 Jul;31(1):81-9.
    PMID: 21549198 DOI: 10.1016/j.fsi.2011.04.004
    Arginine kinase-1 (MrAK-1) was sequenced from the freshwater prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrAK-1 consisted of 1068 bp nucleotide encoded 355 polypeptide with an estimated molecular mass of 40 kDa. MrAK-1 sequence contains a potential ATP:guanido phosphotransferases active domain site. The deduced amino acid sequence of MrAK-1 was compared with other 7 homologous arginine kinase (AK) and showed the highest identity (96%) with AK-1 from cherry shrimp Neocaridina denticulate. The qRT-PCR analysis revealed a broad expression of MrAK-1 with the highest expression in the muscle and the lowest in the eyestalk. The expression of MrAK-1 after challenge with the infectious hypodermal and hematopoietic necrosis virus (IHHNV) was tested in muscle. In addition, MrAK-1 was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The optimum temperature (30 °C) and pH (8.5) was determined for the enzyme activity assay. MrAK-1 showed significant (P < 0.05) activity towards 10-50 mM ATP concentration. The enzyme activity was inhibited by α-ketoglutarate, glucose and ATP at the concentration of 10, 50 and 100 mM respectively. Conclusively, the findings of this study indicated that MrAK-1 might play an important role in the coupling of energy production and utilization and the immune response in shrimps.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  11. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 May;32(5):670-82.
    PMID: 22293093 DOI: 10.1016/j.fsi.2012.01.013
    In this study, we reported a full length of catalase gene (designated as MrCat), identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrCat is 2504 base pairs in length, and encodes 516 amino acids. The MrCat protein contains three domains such as catalase 1 (catalase proximal heme-ligand signature) at 350-358, catalase 2 (catalase proximal active site signature) at 60-76 and catalase 3 (catalase family profile) at 20-499. The mRNA expressions of MrCat in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). The MrCat is highly expressed in digestive tract and all the other tissues (walking leg, gills, muscle, hemocyte, hepatopancreas, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated in digestive tract after IHHNV challenge. To understand its biological activity, the recombinant MrCat gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCat existed in high thermal stability and broad spectrum of pH, which showed over 95% enzyme activity between pH 5 and 10.5, and was stable from 40 °C to 70 °C, and exhibited 85-100% enzyme activity from 30 °C to 40 °C.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  12. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 Jan;32(1):161-9.
    PMID: 22119573 DOI: 10.1016/j.fsi.2011.11.006
    Caspase 3c (MrCasp3c) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrCasp3c consisted of 2080 bp nucleotide encoded 521 polypeptide with an estimated molecular mass of 59 kDa. MrCasp3c sequence contains caspase family p20 domain profile and caspase family p10 domain profile at 236-367 and 378-468 respectively. The quantitative real time PCR analysis revealed a broad expression of MrCasp3c with the highest expression in haemocyte and the lowest in stomach. The expression of MrCasp3c after challenge with the infectious hypodermal and haematopoietic necrosis virus (IHHNV) was tested in haemocyte. In addition, MrCasp3c was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The enzyme activity of MrCasp3c was also found to be up-regulated by IHHNV in haemocyte and hepatopancreas tissues. This study suggested that MrCasp3c may be an effector caspase associated with the induction of apoptosis which is potentially involved in the immune defence of M. rosenbergii.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic*
  13. Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM
    Plant Physiol, 2002 Jul;129(3):1265-75.
    PMID: 12114580
    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  14. Balakrishnan DD, Kumar SG
    Parasit Vectors, 2014;7:219.
    PMID: 24886677 DOI: 10.1186/1756-3305-7-219
    Biochemical evidence of a caspase-like execution pathway has been demonstrated in a variety of protozoan parasites, including Blastocystis spp. The distinct differences in the phenotypic characterization reported previously have prompted us to compare the rate of apoptosis in Blastocystis spp. isolated from individuals who were symptomatic and asymptomatic. In the current study, we analysed the caspase activation involved in PCD mediated by a cytotoxic drug, (metronidazole) in both symptomatic & asymptomatic isolates.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic/physiology
  15. Cheng A, Ismail I, Osman M, Hashim H
    Int J Mol Sci, 2012;13(5):6156-66.
    PMID: 22754356 DOI: 10.3390/ijms13056156
    The polymorphisms of Waxy (Wx) microsatellite and G-T single-nucleotide polymorphism (SNP) in the Wx gene region were analyzed using simplified techniques in fifteen rice varieties. A rapid and reliable electrophoresis method, MetaPhor agarose gel electrophoresis (MAGE), was effectively employed as an alternative to polyacrylamide gel electrophoresis (PAGE) for separating Wx microsatellite alleles. The amplified products containing the Wx microsatellite ranged from 100 to 130 bp in length. Five Wx microsatellite alleles, namely (CT)(10), (CT)(11), (CT)(16), (CT)(17), and (CT)(18) were identified. Of these, (CT)(11) and (CT)(17) were the predominant classes among the tested varieties. All varieties with an apparent amylose content higher than 24% were associated with the shorter repeat alleles; (CT)(10) and (CT)(11), while varieties with 24% or less amylose were associated with the longer repeat alleles. All varieties with intermediate and high amylose content had the sequence AGGTATA at the 5'-leader intron splice site, while varieties with low amylose content had the sequence AGTTATA. The G-T polymorphism was further verified by the PCR-AccI cleaved amplified polymorphic sequence (CAPS) method, in which only genotypes containing the AGGTATA sequence were cleaved by AccI. Hence, varieties with desirable amylose levels can be developed rapidly using the Wx microsatellite and G-T SNP, along with MAGE.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  16. Chia YY, Liong SY, Ton SH, Kadir KB
    Eur J Pharmacol, 2012 Feb 29;677(1-3):197-202.
    PMID: 22227336 DOI: 10.1016/j.ejphar.2011.12.037
    The activities of phosphoenolpyruvate carboxykinase (PEPCK) are influenced by active glucocorticoids which are activated by 11-β-hydroxysteroid dehydrogenase 1 (11β-HSD1) while hexose-6-phosphate dehydrogenase (H6PDH) influences the activities of 11-βHSD1 in a cofactor manner. Dysregulation of PEPCK and H6PDH has been associated with the pathogenesis of metabolic syndrome. Sixteen male Sprague Dawley rats, fed ad libitum, were assigned to two groups, control and treated, with the treated group being given GA at 100mg/kg for one week. Blood and subcutaneous and visceral adipose tissue, abdominal and quadriceps femoris muscle, liver and kidney were examined. GA treatment led to an overall significant decrease in blood glucose while HOMA-IR. PEPCK activities decreased in the liver but increased in the visceral adipose tissue. H6PDH activities also decreased significantly in the liver while 11β-HSD1 activities decreased significantly in all studied tissues except for subcutaneous adipose tissue. Adipocytes in the subcutaneous and visceral depots showed a reduction in size. Though increased glycogen storage was seen in the liver, no changes were observed in the kidneys and muscles. Results from this study may imply that GA could counteract the development of type 2 diabetes mellitus by improving insulin sensitivity and probably by reduction of H6PDH, 11β-HSD1 and a selective decrease in PEPCK activities.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic/drug effects
  17. Dahalan FA, Sidek HM, Murtey MD, Embi MN, Ibrahim J, Fei Tieng L, et al.
    Biomed Res Int, 2016;2016:1645097.
    PMID: 27525262 DOI: 10.1155/2016/1645097
    Plasmodium falciparum mitogen-activated protein (MAP) kinases, a family of enzymes central to signal transduction processes including inflammatory responses, are a promising target for antimalarial drug development. Our study shows for the first time that the P. falciparum specific MAP kinase 2 (PfMAP2) is colocalized in the nucleus of all of the asexual erythrocytic stages of P. falciparum and is particularly elevated in its phosphorylated form. It was also discovered that PfMAP2 is expressed in its highest quantity during the early trophozoite (ring form) stage and significantly reduced in the mature trophozoite and schizont stages. Although the phosphorylated form of the kinase is always more prevalent, its ratio relative to the nonphosphorylated form remained constant irrespective of the parasites' developmental stage. We have also shown that the TSH motif specifically renders PfMAP2 genetically divergent from the other plasmodial MAP kinase activation sites using Neighbour Joining analysis. Furthermore, TSH motif-specific designed antibody is crucial in determining the location of the expression of the PfMAP2 protein. However, by using immunoelectron microscopy, PPfMAP2 were detected ubiquitously in the parasitized erythrocytes. In summary, PfMAP2 may play a far more important role than previously thought and is a worthy candidate for research as an antimalarial.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  18. Deng S, Mai Y, Niu J
    Gene, 2019 Mar 20;689:131-140.
    PMID: 30576805 DOI: 10.1016/j.gene.2018.12.016
    Citrus maxima "seedless" is originally from Malaysia, and now is widely cultivated in Hainan province, China. The essential features of this cultivar are thin skin, green epicarp and seedless at the ripening stage. Here, using C. maxima "seedless" as experimental material, we investigated the physical and inclusion indicators, and found the accumulation of storage compounds during 120-210 DAF leading to inconsistent increase between volume and weight. Component analysis of soluble sugar indicated that arabinose and xylose have a high content in early development of pummelo juice sacs (PJS), whereas fructose, glucose and sucrose show a significant increase during PJS maturation. To clarify a global overview of the gene expressing profiles, the PJSs from four periods (60, 120, 180 and 240 DAF) were selected for comparative transcriptome analysis. The resulting 8275 unigenes showed differential expression during PJS development. Also, the stability of 11 housekeeping genes were evaluated by geNorm method, resulting in a set of five genes (UBC, ACT, OR23, DWA2 and CYP21D) used as control for normalization of gene expression. Based on transcriptome data, 5 sucrose synthases (SUSs) and 10 invertases (INVs) were identified to be involved in sucrose degradation. Importantly, SUS4 may be responsible for arabinose and xylose biosynthesis to form the cell wall in early development, while SUS3 and VIN2 may be important in the accumulation of soluble hexose leading to cell expansion through an osmotic-independent pathway in late development. The information provides valuable metabolite and genetic resources in C. maxima "seedless", and is important for achieving high fruit yield and quality.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  19. Eamsobhana P, Song SL, Yong HS, Prasartvit A, Boonyong S, Tungtrongchitr A
    Acta Trop, 2017 Jul;171:141-145.
    PMID: 28347653 DOI: 10.1016/j.actatropica.2017.03.020
    The rat lungworm Angiostrongylus cantonensis is a food-borne zoonotic parasite of public health importance worldwide. It is the primary etiologic agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans in many countries. It is highly endemic in Thailand especially in the northeast region. In this study, A. cantonensis adult worms recovered from the lungs of wild rats in different geographical regions/provinces in Thailand were used to determine their haplotype by means of the mitochondrial partial cytochrome c oxidase subunit I (COI) gene sequence. The results revealed three additional COI haplotypes of A. cantonensis. The geographical isolates of A. cantonensis from Thailand and other countries formed a monophyletic clade distinct from the closely related A. malaysiensis. In the present study, distinct haplotypes were identified in seven regions of Thailand - AC10 in Phitsanulok (northern region), AC11 in Nakhon Phanom (northeastern region), AC15 in Trat (eastern region), AC16 in Chantaburi (eastern region), AC4 in Samut Prakan (central region), AC14 in Kanchanaburi (western region), and AC13 in Ranong (southern region). Phylogenetic analysis revealed that these haplotypes formed distinct lineages. In general, the COI sequences did not differentiate the worldwide geographical isolates of A. cantonensis. This study has further confirmed the presence of COI haplotype diversity in various geographical isolates of A. cantonensis. The COI gene sequence will be a suitable marker for studying population structure, phylogeography and genetic diversity of the rat lungworm.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
  20. Elvy Suhana MR, Farihah HS, Faizah O, Nazrun AS, Norazlina M, Norliza M, et al.
    Singapore Med J, 2011 Nov;52(11):786-93.
    PMID: 22173247
    Glucocorticoids cause osteoporosis by decreasing bone formation and increasing bone resorption activity. Glucocorticoid action in bones depends on the activity of 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, which plays an important role in regulating corticosteroids. 11β-HSD1 is expressed by human and rat osteoblasts. We aimed to investigate the relationship between 11β-HSD1 dehydrogenase activity and bone histomorphometric changes in glucocorticoid-induced osteoporotic bone in rats.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links