Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Glass Ionomer Cements/chemistry
  2. Elnafar AA, Alam MK, Hasan R
    J Orthod, 2014 Sep;41(3):201-7.
    PMID: 25143559 DOI: 10.1179/1465313314Y.0000000097
    The aim of this study was to assess the effects of four enamel preparation techniques on shear bond strength (SBS) of brackets bonded with a resin-modified glass ionomer cement (RMGIC). Adhesive Remnant Index (ARI) and enamel surface roughness (Ra) were also investigated after cement removal.
    Matched MeSH terms: Glass Ionomer Cements/chemistry*
  3. Tapsir Z, Aly Ahmed HM, Luddin N, Husein A
    J Contemp Dent Pract, 2013 Jan 1;14(1):47-50.
    PMID: 23579892
    To evaluate and compare the microleakage of various restorative materials used as coronal barriers between endodontic appointments.
    Matched MeSH terms: Glass Ionomer Cements/chemistry
  4. Lutfi AN, Kannan TP, Fazliah MN, Jamaruddin MA, Saidi J
    Aust Dent J, 2010 Mar;55(1):79-85.
    PMID: 20415916 DOI: 10.1111/j.1834-7819.2009.01185.x
    The biological examination of pulp injury, repair events and response of dental pulp stem cells to dental restorative materials is important to accomplish restorative treatment, especially to commonly used dental materials in paediatric dentistry, such as glass ionomer cement (GIC) and calcium hydroxide (Ca(OH)(2)) lining cement.
    Matched MeSH terms: Glass Ionomer Cements*
  5. Lui JL
    Quintessence Int, 1999 Sep;30(9):601-6.
    PMID: 10765865
    The introduction of an intraradicular composite reinforcing technique, in conjunction with the reestablishment of matching post canal spaces, has allowed compromised, root-filled teeth to be restored with functional, esthetic post crowns. This clinical case report suggests that reconstituted post canals, in accurately adapting to passive, parallel-sided, matching, and well-fitting posts, can enhance the retention of post crowns. Other factors of clinical importance relating to the resin-reinforced technique are discussed, including fracture resistance, depth of polymerization, dentin adhesion, polymerization shrinkage, and coronal microleakage.
    Matched MeSH terms: Glass Ionomer Cements
  6. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Glass Ionomer Cements
  7. Wan Jusoh WN, Matori KA, Mohd Zaid MH, Zainuddin N, Ahmad Khiri MZ, Abdul Rahman NA, et al.
    Materials (Basel), 2021 Feb 18;14(4).
    PMID: 33670465 DOI: 10.3390/ma14040954
    Glass ionomer cement (GIC) is a well-known restorative material applied in dentistry. The present work aims to study the effect of hydroxyapatite (HA) addition into GIC based on physical, mechanical and structural properties. The utilization of waste materials namely clam shell (CS) and soda lime silica (SLS) glass as replacements for the respective CaO and SiO2 sources in the fabrication of alumino-silicate-fluoride (ASF) glass ceramics powder. GIC was formulated based on ASF glass ceramics, polyacrylic acid (PAA) and deionized water, while 1 wt.% of HA powder was added to enhance the properties of the cement samples. The cement samples were subjected to four different ageing times before being analyzed. In this study, the addition of HA caused an increment in density and compressive strength results along with ageing time. Besides, X-ray Diffraction (XRD) revealed the formation of fluorohydroxyapatite (FHA) phase in HA-added GIC samples and it was confirmed by Fourier Transform Infrared (FTIR) analysis which detected OH‒F vibration mode. In addition, needle-like and agglomeration of spherical shapes owned by apatite crystals were observed from Field Emission Scanning Electron Microscopy (FESEM). Based on Energy Dispersive X-ray (EDX) analysis, the detection of chemical elements in the cement samples were originated from chemical compounds used in the preparation of glass ceramics powder and also the polyacid utilized in initiating the reaction of GIC.
    Matched MeSH terms: Glass Ionomer Cements
  8. Saini, D., Nadig, G., Saini, R.
    MyJurnal
    The main objective of a root end filling material is to provide an apical seal that prevents the movement of bacteria and the diffusion of bacterial products from the root canal system into periapical tissues. The aim of this study was to compare the microleakage of three root end filling materials Mineral trioxide aggregate (MTA), Glass ionomer cement (GIC) and Silver GIC (Miracle Mix) using dye penetration technique under stereomicroscope. Forty-five extracted human maxillary central incisors were instrumented and obturated with gutta percha using lateral compaction technique. Following this, the teeth were stored in saline. After one week, teeth were apically resected at an angle of 90ï° to the long axis of the root and root end cavities were prepared. The teeth were divided into three groups of fifteen specimens each and were filled with Group I -MTA, Group II - GIC and Group III - Miracle Mix. The samples were coated with varnish and after drying, they were immersed in 1% methylene blue dye for 72 hours. The teeth were then rinsed, sectioned longitudinally and observed under stereomicroscope. The depth of dye penetration was measured in millimeters. Microleakage was found to be significantly less in MTA (0.83 mm) when compared to GIC (1.32 mm) (p < 0.001) and with Miracle Mix (1.39 mm) (p < 0.001) No significant difference was found when microleakage in Miracle Mix was compared to that of GIC (p = 0.752). Thus we concluded that MTA is a better material as root end filling material to prevent microleakage, in comparison to GIC and Miracle Mix.
    Matched MeSH terms: Glass Ionomer Cements
  9. Khim TP, Sanggar V, Shan TW, Peng KC, Western JS, Dicksit DD
    J Conserv Dent, 2018 10 9;21(5):562-568.
    PMID: 30294122 DOI: 10.4103/JCD.JCD_115_18
    Introduction: Among the various causes of tooth discoloration after root canal treatment, percolation of sealer remnants into the dentinal tubules of the pulp chamber is the most common cause.

    Objectives: The aim of this study is to evaluate the efficacy of dentin bonding agent (DBA) in preventing coronal discoloration caused by four different root canal sealers- MTA Fillapex, Sealapex, Zical and Z. O. B seal at different time intervals by measuring chromatic alterations using digital images analysis method.

    Methodology: Ninety mandibular premolars were collected and sectioned at 1 mm below the cementoenamel junction. Standard access cavity preparations of dimensions (depth-3 mm, width-0.8 mm, and length-3 mm) were prepared with a No. 245 bur through the cervical access. Following the standard irrigation protocol, specimens were then randomly divided into nine groups (four groups without DBA [1-4] +4 groups with DBA [5-8] +1 negative control [9]). In Groups 1-4, four different root canal sealers (MTA Fillapex, Sealapex, Zical, and Z.O.B seal) were applied to the walls of the pulp chamber. For Groups 5-8, the samples were etched with 37% phosphoric acid and DBA application was done before the respective root canal sealer application. The cervical access in all specimens was sealed using glass ionomer cement. Digital photographs were taken under standard lighting and environmental conditions at different time intervals: preprocedural, postprocedural, and after 1, 2, 3, and 4 months. These images were analyzed using Adobe Photoshop CS6 from which laboratory values and subsequently Delta E values were obtained.

    Results: Statistical analysis performed using repeated measures ANOVA and post hoc Tukey's tests show that the groups with DBA application had significantly lower mean Delta E values (P < 0.05) compared to the groups without DBA application.

    Conclusion: DBAs applied to the dentinal walls of the pulp chamber before obturation can effectively reduce the sealer-induced coronal discoloration.

    Matched MeSH terms: Glass Ionomer Cements
  10. Al-Maqtari AA, Lui JL
    J Prosthodont, 2010 Jul;19(5):347-56.
    PMID: 20456026 DOI: 10.1111/j.1532-849X.2010.00593.x
    The purpose of this in vitro study was to determine if packable resin composite with/without flowable resin composite has the ability to prevent coronal leakage in restored endodontic access openings following aging.
    Matched MeSH terms: Glass Ionomer Cements/chemistry
  11. Al-Makramani BMA, Razak AAA, Abu-Hassan MI
    J Prosthodont, 2008 Feb;17(2):120-124.
    PMID: 18047490 DOI: 10.1111/j.1532-849X.2007.00270.x
    PURPOSE: The current study investigated the effect of different luting agents on the fracture resistance of Procera AllCeram copings.

    METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.

    CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.

    Matched MeSH terms: Glass Ionomer Cements/chemistry
  12. Purmal K, Nambiar P
    J Vet Dent, 2009;26(1):36-9.
    PMID: 19476086
    Matched MeSH terms: Glass Ionomer Cements/therapeutic use
  13. Ariffin Z, Ngo H, McIntyre J
    Aust Dent J, 2006 Dec;51(4):328-32.
    PMID: 17256308
    BACKGROUND: This study investigated the extent to which a coating of 10% silver fluoride (AgF) on discs of glass jonomer cements (GIGs) would enhance the release of fluoride ion into eluting solutions at varying pH.

    MATERIALS AND METHODS: Forty discs each of Fuji LX, Fuji VII and of Vitrebond were prepared in a plastic mould. Twenty discs of each material were coated for 30 seconds with a 10% solution of AgF. Five discs each of coated and uncoated material were placed individually in 4m1 of differing eluant solutions. The eluant solutions comprised deionized distilled water (DDW) and three separate acetate buffered solutions at pH 7, pH 5 and pH 3. After 30 minutes the discs were removed and placed in five vials containing 4m1 of the various solutions for a further 30 minutes. This was repeated for further intervals of time up to 216 hours, and all eluant solutions were stored. Fluoride concentrations in the eluant solutions were estimated using a fluoride specific electrode, with TISAB IV as a metal ion complexing and ionic concentration adjustment agent. Cumulative fluoride release patterns were determined from the incremental data.

    RESULTS: The coating of AgF greatly enhanced the level of fluoride ion release from all materials tested. Of the uncoated samples, Vitrehond released the greater concentrations of fluoride ion, followed by Fuji VII. However, cumulative levels of fluoride released from coated samples of the GICs almost matched those from coated Vitrebond.

    CONCLUSIONS: It was concluded that a coating of 10% AgF on GICs and a resin modified GIC greatly enhanced the concentration of fluoride released from these materials. This finding might be applied to improving protection against recurrent caries, particularly in high caries risk patients, and in the atraumatic restorative technique (ART) of restoration placement.

    Matched MeSH terms: Glass Ionomer Cements/chemistry*
  14. Mohd Zainal Abidin R, Luddin N, Shamsuria Omar N, Mohamed Aly Ahmed H
    J Clin Pediatr Dent, 2015;39(3):235-40.
    PMID: 26208068 DOI: 10.17796/1053-4628-39.3.235
    To compare the cytotoxicity of conventional GIC and Resin Modified GIC (RMGIC) polymerized at 2 different times on stem cells from human exfoliated deciduous teeth (SHED).
    Matched MeSH terms: Glass Ionomer Cements/toxicity*
  15. Vamsi K, Siddiqui F
    J Contemp Dent Pract, 2018 Jul 01;19(7):824-829.
    PMID: 30066686
    AIM: To study the antimicrobial effect of chlorhexidine diacetate (CHX-D)-modified type II glass ionomer cement (GIC) against the two predominant deep caries microorganisms, namely Lactobacillus casei and Actinomyces viscosus.

    MATERIALS AND METHODS: An experimental GIC (ex-GIC) was prepared by mixing CHX-D powder with the powder of type II GIC to obtain 1% (w/w) concentration of CHX-D in the GIC. Antibacterial activity of this ex-GIC was tested against L. casei and A. viscosus using the agar diffusion method. The ex-GIC specimens were tested in their unset and set forms for each bacterium. For the unset group, specimens were placed in each agar plate immediately after manipulation and for the set group, specimens were placed in each agar plate, 1 hour after manipulation. The inhibition zones on the agar plate were recorded in millimeters immediately on placement of the specimen in the agar plate and after 48 hours. The reading was recorded and statistically analyzed for significant difference.

    RESULTS: Mann-Whitney U test showed statistically significant difference in the inhibition zones produced by ex-GIC against L. casei and A. viscosus when both were compared in unset (p-value = 0.002) and set (p-value = 0.031) groups. For both the groups, the zone of inhibition against L. casei was greater. Though the unset group recorded wider zone of inhibition, the difference was not significant when compared with the respective set group. This was true for both the bacterial groups.

    CONCLUSION: The 1% CHX-D-modified type II GIC showed antibacterial property against L. casei and A. viscosus and significantly higher activity against L. casei.

    CLINICAL SIGNIFICANCE: Addition of 1% CHX-D to type II GIC showed evidence of antibacterial activity against organisms found in deep carious lesion and therefore may exhibit superior antimicrobial efficiency when used as an intermediate therapeutic restoration in deep cavities.

    Matched MeSH terms: Glass Ionomer Cements/pharmacology*
  16. Ong RM, Luddin N, Ahmed HM, Omar NS
    Singapore Dent J, 2012 Dec;33(1):19-23.
    PMID: 23739319 DOI: 10.1016/j.sdj.2012.11.001
    The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications.
    Matched MeSH terms: Glass Ionomer Cements
  17. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Glass Ionomer Cements
  18. Rajeev V, Arunachalam R, Nayar S, Arunima PR, Ganapathy S, Vedam V
    Eur J Dent, 2017 4 25;11(1):58-63.
    PMID: 28435367 DOI: 10.4103/ejd.ejd_113_16
    OBJECTIVE: This in vitro study was designed to assess shear bond strength (SBS) of ormocer flowable (OF) resin as a luting agent, ormocer as an indirect veneer material with portrayal of modes of failures using scanning electron microscope (SEM).

    MATERIALS AND METHODS: Sixty maxillary central incisors were divided into Group I, II, and III with 20 samples each based on luting cement used. They were OF, self-adhesive (SA) cement, and total etch (TE) cement. These groups were subdivided into "a" and "b" of ten each based on the type of veneering materials used. Veneer discs were fabricated using Ormocer restorative (O) and pressable ceramic (C). Specimens were thermocycled and loaded under universal testing machine for SBS. The statistical analysis was done using one-way ANOVA post hoc Tukey honest significant difference method.

    RESULTS: A significant difference was observed between the Groups I and II (P < 0.05). The highest mean bond strength when using ormocer veneer was obtained with the Group Ia (19.11 ± 1.92 Mpa) and lowest by Group IIa (8.1 ± 1.04 Mpa), whereas the highest mean bond strength while using ceramic veneer was of similar range for Group Ib (18.04 ± 4.08 Mpa) and Group IIIb (18.07 ± 1.40 Mpa). SEM analysis revealed OF and TE presented mixed type of failure when compared with SA where failure mode was totally adhesive.

    CONCLUSION: OF was found equally efficient like TE. Bond strength of ormocer as a veneer was not inferior to ceramic making it one of the promising additions in the field of dentistry.

    Matched MeSH terms: Glass Ionomer Cements
  19. Annuar, W.A., Abdullah, H.
    Ann Dent, 2003;10(1):-.
    MyJurnal
    This study is conducted to compare two resin luting cements (Rely XTMARC,3M and Compolute™ESPE) on their microleakage with one composite inlay system (Filtek™ Z250 Universal Restorative Materials, 3M). Thirty conventional inlays, Class II MOIDO cavity with gingival margin I mm above the cementoenamel junction, were prepared in premolar teeth. The composite inlays were fabricated directly on the prepared teeth using layering technique. Fifteen of the inlays were cemented with RelyTMX ARC and fifteen with Compolute™ (ESPE). The specimens were kept at 370 C for 10 days before thermocycling and immersed in methylene blue 2% solution for 24 hours. The teeth were sectioned mesio-distally. The site and degree of leakage of each section was scored using a visual scoring system under a stereomicroscope at a magnification of 1.5X. Results showed that there was no significant difference in'leakage extent (p>O.05), between Rely X™ARC and Compolute™. For both materials, leakage occurred most commonly within the enamel surface and between the cement-tooth interfaces. None of the leakage occurred between inlay - cement interface. There is no significant difference in the extent of leakage between Rely XTMARC compared to Compolute™.
    Matched MeSH terms: Glass Ionomer Cements
  20. Dahlia Lema, A.M., Kartini, K., Dyg. Siti Quraisyah, A.A., Anthony, A.D., Nuraini, T., Siti Rahimah, R.
    MyJurnal
    Sludge is an unavoidable product of wastewater treatment that creates problems of disposal. Increasingly, strict environmental control regulations have resulted in limitations on sludge disposal options.Disposal by incineration has been found to be a good option. In this research, application of domestic waste sludge powder (DWSP) was used as cement replacement in concrete mix. This study utilised replacement of 3 %, 5 %, 7 %, 10 % and 15 % by weight of OPC with water binder (w/b) ratio of 0.60, 0.55 and 0.40 for Grade 30, Grade 40 and Grade 50 respectively. The performance of DWSP concrete in terms of its compressive strength, water absorption, water permeability and Rapid Chloride Ion penetration were investigated. All values of compressive strength for DWSP concrete were lower compared to the OPC control, and the strength decreased as the percentage of replacement with DWSP increased for Grade 30 and Grade 50, except for Grade 40 at replacement of 7 %. Meanwhile, water absorption and water permeability for the DWSP concrete increased as the replacement increased. Overall, with further research in producing quality DWSP, the potential of using this waste as a cement replacement material is very promising.
    Matched MeSH terms: Glass Ionomer Cements
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links