Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Shahida S, Nor Zamzila A, Norlelawati AT, Jamalludin AR, Azliana AF, Zunariah Buyong
    MyJurnal
    Introduction: Over the decades, organic arsenic has been thought to be less toxic than inorganic arsenic.
    Monosodium methylarsonate (MSMA) is a potent organoarsenical herbicide that is still being used in most
    Asian countries. Reported studies on the effects of organic arsenic are mainly to the gastrointestinal system,
    however there are limited research on its impacts to the liver. Therefore, this study aimed to investigate the
    effect of MSMA exposure on hepatocytes and liver sinusoidal endothelial cells (LSEC). Materials and Methods:
    Fourteen Sprague Dawley rats (n=14) were divided equally into arsenic-exposed (n=7) and control (n=7)
    groups. The rats in arsenic-exposed group were given MSMA at 63.20 mg/kg daily for 6 months through oral
    gavage. While the rats in control group were given distilled water ad libitum. At the end of the duration,
    they were euthanized and underwent liver perfusion for tissue preservation. Liver tissues were harvested and
    processed for light microscopy, scanning and transmission electron microscopy. The findings were analysed
    descriptively. Results: MSMA had caused necrotic and apoptotic changes to the liver. Normal organelles
    morphology were loss in the hepatocytes while LSEC revealed defenestration. Conclusion: In this study,
    chronic low dose organic arsenic exposure showed evidence of toxicity to hepatocytes. Interestingly, LSEC
    demonstrated capillarization changes.
    Matched MeSH terms: Herbicides
  2. Chen J, Jiang C, Huang H, Wei S, Huang Z, Wang H, et al.
    Pestic Biochem Physiol, 2017 Nov;143:201-206.
    PMID: 29183593 DOI: 10.1016/j.pestbp.2017.09.012
    The evolution of weed-resistant species threatens the sustainable use of glyphosate, which is the most important herbicide widely used in agriculture worldwide. Moreover, the high glyphosate resistance (>180-fold based on LD50) of Eleusine indica found in Malaysia, which carries a double mutation in its 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), made the control of this species more difficult. By contrast, the same species carrying the same double mutation in EPSPS (T102I+P106S) but found in China only shows a resistance level of not more than 14-fold based on GR50. The resistance level of this population is four times higher than that of the population carrying a single mutation (P106L). Although the members of this population survive under a high glyphosate dosage of 10,080gaeha-1, their growth was significantly inhibited by glyphosate under the recommend dose (840gaeha-1), where in the fresh weight was 85.4% of the control. EPSPS expression, relative copy number, and EPSPS activity in this population were similar to those of the susceptible population. In addition, the expression of two glutathione transferase (GST) genes (GST-U8 and GST-23) and the enzyme activity of the GST in this population did not significantly differ from those of the susceptible population. This finding is important in elucidating the resistance of the naturally evolved glyphosate-resistant (GR) weed species carrying a double mutation in EPSPS to glyphosate.
    Matched MeSH terms: Herbicides/pharmacology
  3. Loh KS, Lee YH, Musa A, Salmah AA, Zamri I
    Sensors (Basel), 2008 Sep 18;8(9):5775-5791.
    PMID: 27873839
    Magnetic nanoparticles of Fe₃O₄ were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe₃O₄ nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe₃O₄ nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe₃O₄ nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe₃O₄ nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.
    Matched MeSH terms: Herbicides
  4. Nashriyah Mat, Mazleha Maskin, Abdul Khalik Wood, Zaini Hamzah
    MyJurnal
    Mineral elemental uptake by Colocasia esculenta growing in swamp agroecosystem was studied following 14, 18 or 28 months of field spraying (MAT, months after treatment) with herbicide Gramoxone ® (paraquat). In overall, Al (68226.67 + 24066.56 μg/g dw) was the major element in riverine alluvial swamp soil, followed by micronutrient Fe (22280.00 + 6328.87 μg/g dw).
    Concentration of macronutrient K (20733.33 + 7371.82 μg/g dw) was the highest in swamp taro leaf followed by macronutrient Ca (7050.00 + 3767.26 μg/g dw). In overall, the order of importance of the average mineral concentration in swamp taro leaf was K > Ca > Mn > Al > Na > Fe > Zn > Br > Co. However at 14 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Al > Na > Mn > Fe > Zn > Br > Co. At 18 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Mn > Al > Fe > Na > Zn > Br > Co. At 28 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Mn > Fe > Al > Zn > Na > Br > Co. In overall, the average order of importance of mineral elemental uptake or the soil plant transfer coefficient was Mn > K > Na > Zn > Co > Fe > Al; similar with the order at 28 MAT. However, at 14 MAT the order of importance of the soil plant transfer coefficient was different at Mn > K > Na > Co > Zn > Al > Fe.
    Matched MeSH terms: Herbicides
  5. Hussein MZ, Rahman NS, Sarijo SH, Zainal Z
    Int J Mol Sci, 2012;13(6):7328-42.
    PMID: 22837696 DOI: 10.3390/ijms13067328
    Herbicides, namely 4-(2,4-dichlorophenoxy) butyrate (DPBA) and 2-(3-chlorophenoxy) propionate (CPPA), were intercalated simultaneously into the interlayers of zinc layered hydroxide (ZLH) by direct reaction of zinc oxide with both anions under aqueous environment to form a new nanohybrid containing both herbicides labeled as ZCDX. Successful intercalation of both anions simultaneously into the interlayer gallery space of ZLH was studied by PXRD, with basal spacing of 28.7 Å and supported by FTIR, TGA/DTG and UV-visible studies. Simultaneous release of both CPPA and DPBA anions into the release media was found to be governed by a pseudo second-order equation. The loading and percentage release of the DPBA is higher than the CPPA anion, which indicates that the DPBA anion was preferentially intercalated into and released from the ZLH interlayer galleries. This work shows that layered single metal hydroxide, particularly ZLH, is a suitable host for the controlled release formulation of two herbicides simultaneously.
    Matched MeSH terms: Herbicides/chemistry*
  6. Sarijo SH, Hussein MZ, Yahaya AH, Zainal Z
    J Hazard Mater, 2010 Oct 15;182(1-3):563-9.
    PMID: 20633986 DOI: 10.1016/j.jhazmat.2010.06.070
    The release of chlorophenoxyherbicides agrochemicals, namely 2-chloro- (2CPA), 4-chloro and 2,4,5-trichloro (TCPA) phenoxyacetates from their nanohybrids into various aqueous solutions; carbonate, sulfate and chloride was found to be controlled by pseudo-second order rate expression. The percentage saturated released was found to be anionic-dependent, in the order of carbonate>sulfate>chloride for the release media and 2CPA>4CPA>TCPA for the anionic guests. This study demonstrates that the release of the phenoxyherbicides agrochemicals from the nanohybrid compounds can be tuned by choosing the right combination of exchangeable anions both the incoming and the outgoing anions.
    Matched MeSH terms: Herbicides/chemistry*
  7. Hussein MZ, Hashim N, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2009 Mar;9(3):2140-7.
    PMID: 19435093
    Hybridization of beneficial organic guest with inorganic host affords scientists an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications, especially for controlled delivery of beneficial agent and storage. A new layered organic-inorganic nanohybrid material containing an agrochemical, 4-(2,4-dichlorophenoxy)butyrate (DPBA) in Zn-Al-layered double hydroxide inorganic interlayer was synthesised by direct and indirect methods. Both methods yielded mesoporous-type, phase pure, well-ordered layered nanohybrids with similar basal spacing of 28.5-28.7 angstroms and organic loading of around 54.3%. Compared to the material prepared by direct method, the ion exchanged product inherited more of the host's properties especially the pore structure and the organic moiety is also more easily released. This shows that the method of preparation plays an important role in determining the resulting physicochemical properties, in particular the release property and therefore can be used as a means to tune up the release property of the beneficial agent.
    Matched MeSH terms: Herbicides/chemistry*
  8. Mohd NI, Gopal K, Raoov M, Mohamad S, Yahaya N, Lim V, et al.
    Talanta, 2019 May 01;196:217-225.
    PMID: 30683354 DOI: 10.1016/j.talanta.2018.12.043
    The non-ionic silicone surfactant (OFX 0309) has been applied in cloud point extraction for the extraction of triazine herbicides in food samples. Evidence has shown that the non-ionic silicone surfactant demonstrated a good performance as an extractor toward triazine herbicides. In this present study, OFX 0309 surfactant was combined with activated charcoal (AC) due to their valuable properties. Activated charcoal modified with non-ionic silicone surfactant coated with magnetic nanoparticles (AC-OFX MNPs) was synthesized and characterized by FT-IR, VSM, SEM, TEM and BET. This novel material was applied as a magnetic adsorbent for the pre-concentration and separation of triazine herbicides due to hydrophobic interaction between polysiloxane polyether of OFX 0309 surfactant and triazine herbicides. Under optimal conditions, the proposed magnetic solid phase extraction method using AC-OFX MNPs adsorbent was applied to extract triazine herbicides from selected milk and rice samples using high performance liquid chromatography coupled with diode array detector. The validation method revealed a good linearity (1 - 500 μg L-1) with the coefficient of determination (R2) in the range of 0.992-0.998 for the samples. The limits of detection (LOD) of the developed method were 0.04 - 0.05 µg L-1 (milk sample) and 0.02 - 0.05 µg L-1 (rice sample). The limits of quantification (LOQ) were 0.134 - 0.176 µg L-1 (milk sample) and 0.075 - 0.159 µg L-1 (rice sample). The recoveries of the triazine compounds ranged from 81% to 109% in spiked milk samples and from 81% to 111% in spiked rice samples, with relative standard deviations (RSD) values lower than 13.5% and 12.1% for milk and rice samples, respectively. To the best of our knowledge, this is the first study that have investigated the use of magnetic nanoparticles coated activated charcoal modified with OFX 0309 surfactant for pretreatment of triazine herbicides in food samples analysis for simultaneous separation of organic pollutants.
    Matched MeSH terms: Herbicides/analysis*; Herbicides/chemistry
  9. Sahid I, Razlin W, Zaabar W
    Bull Environ Contam Toxicol, 1993 Oct;51(4):605-11.
    PMID: 8400666
    Matched MeSH terms: Herbicides/pharmacology*
  10. Stuart AM, Merfield CN, Horgan FG, Willis S, Watts MA, Ramírez-Muñoz F, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):16984-17008.
    PMID: 36622585 DOI: 10.1007/s11356-022-24951-0
    A small proportion of the thousands of pesticides on the market today are associated with a disproportionately high incidence of severe acute pesticide poisoning and suicide. Paraquat stands out as one of the most lethal pesticides in common use, frequently involved in fatal incidents due to suicides or accidental exposure. Even though paraquat has been banned in over 67 countries, it is still widely used in many others, particularly in Asia and Latin America. Based on a literature review and consultations, this paper identifies options for replacing paraquat and distils practical lessons from numerous successes around the world. Our aim is to support regulators, policymakers, agronomists and the supply chain sector with practical information related to phasing out paraquat. Production data consistently failed to show any negative effects of banning paraquat on agricultural productivity. A wide range of alternative approaches to weed management and crop defoliation are available, many of which do not rely on herbicides. Over 1.25 million farmers in low- and middle-income countries (LMICs) successfully produce a range of crops for private voluntary standards (PVS) in food and fiber supply chains which prohibit paraquat use. We conclude from the findings of this study that eliminating paraquat will save lives without reducing agricultural productivity. Less hazardous and more sustainable alternatives exist. To enhance successful adoption and uptake of these methods on a wide scale, farmers require training and support within an enabling policy environment.
    Matched MeSH terms: Herbicides*
  11. Sahid IB, Wei CC
    Bull Environ Contam Toxicol, 1993 Jan;50(1):24-8.
    PMID: 8418934
    Matched MeSH terms: Herbicides*
  12. Tan XL, Othman RY, Teo CH
    3 Biotech, 2020 Apr;10(4):183.
    PMID: 32257739 DOI: 10.1007/s13205-020-02176-7
    5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the primary target for the broad-spectrum herbicide, glyphosate. Improvement of EPSPS gene for high level of glyphosate tolerance is important to generate glyphosate-tolerant crops. In this study, we report the isolation and characterization of EPSPS genes of glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47. Both P. nitroreducens strains FY43 and FY47, which showed glyphosate tolerance up to 8.768% (518.4 mM, 32 × higher than field application), were isolated from soil samples collected from oil palm plantation with a long history of glyphosate application. The glyphosate tolerance property of EPSPS genes of strains FY43 and FY47 was functionally characterized by expressing the genes in Escherichia coli strain BL21(DE3). Error-prone PCR was performed to mutagenize native EPSPS gene of strains FY43 and FY47. Ten mutagenized EPSPS with amino acid changes (R21C, N265S, A329T, P71L, T258A, L184F, G292C, G292S, L35F and A242V) were generated through error-prone PCR. Both native and mutated EPSPS genes of strains FY43 and FY47 were introduced into Escherichia coli strain BL21(DE3) and transformants were selected on basal salt medium supplemented with 8.768% (518.4 mM) glyphosate. Mutants with mutations (R21C, N265S, A329T, P71L, T258A, L35F, A242V, L184F and G292C) showed sensitivity to 8.768% glyphosate, whereas glyphosate tolerance for mutant with G292S mutation was not affected by the mutation.
    Matched MeSH terms: Herbicides
  13. Roslan AA, Tayyab S
    Biochem Mol Biol Educ, 2019 03;47(2):156-160.
    PMID: 30629781 DOI: 10.1002/bmb.21207
    A laboratory exercise on the interaction between the herbicide pendimethalin (PM) and goat serum albumin (GSA), a carrier protein present in mammalian blood circulation, is described. Fluorescence spectroscopy was used to study the binding reaction between PM and GSA. Titration of a constant amount of the protein (GSA) with increasing ligand (PM) concentrations produced a consecutive decrease in the protein's fluorescence. Treatment of the fluorescence quenching data according to the Stern-Volmer equation yielded the values of the Stern-Volmer constant (Ksv ) and bimolecular quenching rate constant (kq ), whereas values of the binding constant (Ka ) and number of binding sites (n) were obtained from the double logarithmic plot. This experiment provides an exciting opportunity for undergraduate students to independently perform ligand binding studies with a protein, in addition to providing the means for the determination of their binding parameters. © 2019 International Union of Biochemistry and Molecular Biology, 47(2): 156-160, 2019.
    Matched MeSH terms: Herbicides/pharmacology; Herbicides/chemistry*
  14. Ismail BS, Eng OK, Tayeb MA
    PLoS One, 2015;10(10):e0138170.
    PMID: 26437264 DOI: 10.1371/journal.pone.0138170
    Triazine-2-(14)C metsulfuron-methyl is a selective, systemic sulfonylurea herbicide. Degradation studies in soils are essential for the evaluation of the persistence of pesticides and their breakdown products. The purpose of the present study was to investigate the degradation of triazine-2-(14)C metsulfuron-methyl in soil under laboratory conditions. A High Performance Liquid Chromatograph (HPLC) equipped with an UV detector and an on-line radio-chemical detector, plus a Supelco Discovery column (250 x 4.6 mm, 5 μm), and PRP-1 column (305 x 7.0 mm, 10 μm) was used for the HPLC analysis. The radioactivity was determined by a Liquid Scintillation Counter (LSC) in scintillation fluid. The soil used was both sterilized and non-sterilized in order to observe the involvement of soil microbes. The estimated DT50 and DT90 values of metsulfuron-methyl in a non-sterile system were observed to be 13 and 44 days, whereas in sterilized soil, the DT50 and DT90 were 31 and 70 days, respectively. The principal degradation product after 60 days was CO2. The higher cumulative amount of (14)CO2 in (14)C-triazine in the non-sterilized soil compared to that in the sterile system suggests that biological degradation by soil micro-organisms significantly contributes to the dissipation of the compound. The major routes of degradation were O-demethylation, sulfonylurea bridge cleavage and the triazine "ring-opened."
    Matched MeSH terms: Herbicides/metabolism; Herbicides/chemistry*
  15. Ismail BS, Prayitno S, Tayeb MA
    Environ Monit Assess, 2015 Jul;187(7):406.
    PMID: 26045037 DOI: 10.1007/s10661-015-4600-9
    The purpose of the present study was to investigate the potential risk of herbicide contamination (2,4-dichlorophenoxy (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), metsulfuron, bensulfuron, and pyrazosulfuron) in the rice fields of the Muda Irrigation Scheme, Kedah, Malaysia. The study included two areas with different irrigation water sources namely non-recycled (N-RCL) and recycled (RCL) water. Periodic water sampling was carried out from the drainage canals during the planting period of the wet season 2006/2007 and dry season 2007. The HPLC-UV was used to detect herbicide residues in the water samples collected from the rice fields. The results showed that the concentration of sulfonylurea herbicides such as bensulfuron and metsulfuron in the rice field was 0.55 and 0.51 μg/L, respectively. The potential risk of contamination depended on the actual dosage of each herbicide applied by farmers to their rice fields. The potential risk of water pollution by the five herbicides studied in the area with RCL water tended to be more widespread compared to the area with N-RCL water due to surface water runoff with higher levels of weedicides to the surrounding areas. During the two seasons, 50-73% of the water samples collected from the area receiving RCL water contained the five herbicides studied at concentrations of more than 0.05 μg/L, and this percentage was higher than that from the areas receiving N-RCL water (45-69%). During the wet season, the overall total mean concentration of the eight herbicides found in the samples collected from the area with RCL water (6.27 μg/L) was significantly higher (P  0.05) in the herbicide concentrations between the areas receiving RCL (6.16 μg/L) and N-RCL water (7.43 μg/L) water.
    Matched MeSH terms: Herbicides/analysis*
  16. Abdullah AR, Sinnakkannu S, Tahir NM
    Bull Environ Contam Toxicol, 2001 Jun;66(6):762-9.
    PMID: 11353379
    Matched MeSH terms: Herbicides/pharmacokinetics; Herbicides/chemistry*
  17. Tang SP, Kuttulebbai Nainamohamed Salam S, Jaafar H, Gan SH, Muzaimi M, Sulaiman SA
    Oxid Med Cell Longev, 2017;2017:4605782.
    PMID: 28127418 DOI: 10.1155/2017/4605782
    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ (p < 0.05). The lungs of animals from group PQ showed significantly decreased activity of superoxide dismutase and glutathione-S-transferase. Treatment with Tualang honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung.
    Matched MeSH terms: Herbicides/toxicity*
  18. Gafar, A.A., Khayat, M.E., Abdul Rahim, M.B.H., Shukor, M.Y.
    MyJurnal
    Acrylamide is a synthetic monomer that has been classified as toxic and carcinogenic apart
    from its diverse application in the industry. Its application is in the formation of
    polyacrylamide. Polyacrylamide usage is diverse and is found as herbicide formulation, as soil
    treatment agent and in water treatment plants. Deaths and sickness due to the accidental
    exposure to acrylamide have been reported while chronic toxicity is also a source of the
    problem. This review highlighted the toxic effect of acrylamide to various organisms like
    human, animal and plant. This review also discusses on the potential use of biological
    technologies to remediate acrylamide pollution in the environment and the degradation
    pathways these microorganisms utilize to assimilate acrylamide as a nitrogen, carbon or both as
    carbon and nitrogen sources.
    Matched MeSH terms: Herbicides
  19. Ahmad AL, Tan LS, Shukor SR
    J Hazard Mater, 2008 Feb 28;151(1):71-7.
    PMID: 17587496
    In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.
    Matched MeSH terms: Herbicides/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links