Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Al-Khateeb, A, Al-Talib, H
    JUMMEC, 2016;19(2):1-11.
    MyJurnal
    Background:
    Familial hypercholesterolaemia (FH) is one of the most frequent inherited metabolic disorders that can lead
    to a risk of premature cardiovascular disease. Publications on FH are mainly from western patients as there is
    little research on Asians, including Malaysians. The aim of this review is to provide an up-to- date information
    on Malaysian studies on FH genotyping and its relation to the phenotype of the affected patients.
    Method:
    A search was conducted for data from online databases on FH in Malaysia.
    Results:
    The mutation spectrum for FH among Malaysian patients was extremely broad. The gene variants were located
    mainly in the low-density lipoprotein receptor (LDLR) and apolipoprotein B-100 (APOB-100) genes rather than
    in the proprotein convertase subtilisin kexin type 9 (PCSK9) gene. The exon 9 and 14 were the hotspots in the
    LDLR gene. The most frequent mutation was p.Cys255Ser, at 12.5%, followed by p.Arg471Gly, at 11%, and the
    most common single nucleotide polymorphism (SNP) was c.1060+7 T>C at 11.7%. The LDLR gene variants were
    more common compared to the APOB-100 gene variants, while variants in the PCSK9 gene were very few.
    Phenotype-genotype associations were identified. Subjects with LDLR and APOB-100 genes mutations had a
    higher frequency of cardiovascular disease, a family history of hyperlipidaemia and tendon xanthoma and a
    higher low-density lipoprotein cholesterol (LDL-C) level than non-carriers.
    Conclusion:
    Research on Malaysian familial hypercholesterolaemic patients by individual groups is encouraging. However,
    more extensive molecular studies on FH on a national scale, with a screening of the disease-causing mutations
    together with a comprehensive genotype-phenotype association study, can lead to a better outcome for
    patients with the disease.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  2. Alhabib KF, Al-Rasadi K, Almigbal TH, Batais MA, Al-Zakwani I, Al-Allaf FA, et al.
    PLoS One, 2021;16(6):e0251560.
    PMID: 34086694 DOI: 10.1371/journal.pone.0251560
    BACKGROUND AND AIMS: Familial hypercholesterolemia (FH) is a common autosomal dominant disorder that can result in premature atherosclerotic cardiovascular disease (ASCVD). Limited data are available worldwide about the prevalence and management of FH. Here, we aimed to estimate the prevalence and management of patients with FH in five Arabian Gulf countries (Saudi Arabia, Oman, United Arab Emirates, Kuwait, and Bahrain).

    METHODS: The multicentre, multinational Gulf FH registry included adults (≥18 years old) recruited from outpatient clinics in 14 tertiary-care centres across five Arabian Gulf countries over the last five years. The Gulf FH registry had four phases: 1- screening, 2- classification based on the Dutch Lipid Clinic Network, 3- genetic testing, and 4- follow-up.

    RESULTS: Among 34,366 screened patient records, 3713 patients had suspected FH (mean age: 49±15 years; 52% women) and 306 patients had definite or probable FH. Thus, the estimated FH prevalence was 0.9% (1:112). Treatments included high-intensity statin therapy (34%), ezetimibe (10%), and proprotein convertase subtilisin/kexin type 9 inhibitors (0.4%). Targets for low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol were achieved by 12% and 30%, respectively, of patients at high ASCVD risk, and by 3% and 6%, respectively, of patients at very high ASCVD risk (p <0.001; for both comparisons).

    CONCLUSIONS: This snap-shot study was the first to show the high estimated prevalence of FH in the Arabian Gulf region (about 3-fold the estimated prevalence worldwide), and is a "call-to-action" for further confirmation in future population studies. The small proportions of patients that achieved target LDL-C values implied that health care policies need to implement nation-wide screening, raise FH awareness, and improve management strategies for FH.

    Matched MeSH terms: Hyperlipoproteinemia Type II/drug therapy; Hyperlipoproteinemia Type II/metabolism; Hyperlipoproteinemia Type II/epidemiology*
  3. Muthupalaniappen L, Menon RK, Das S
    Saudi Med J, 2012 Feb;33(2):197-200.
    PMID: 22327763
    Myocardial infarction (MI) is known to be common in adults. Interestingly, we report a case of a 15-year-old boy who presented with typical chest pain secondary to myocardial infarct attributable to a combination of familial hyperlipidemia and possible episode of Kawasaki disease in the past. The patient failed treatment and follow-up care, and died 2 years later. Although rare, this case demonstrates that MI should be considered as a diagnosis in adolescents presenting with typical chest pain as early detection, and management is vital for survival.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications*
  4. Khoo KL, Van Acker P, Tan H, Deslypere JP
    Med J Malaysia, 2000 Dec;55(4):409-18.
    PMID: 11221151
    A total of 86 unrelated Malaysian patients with familial hypercholesterolaemia (FH) were studied for mutations in their low-density lipoprotein receptor (LDL-R) gene. Amongst them, 23 had a LDL-R gene mutation, while none having an Apolipoprotein B-3500 (Apo B-3500) mutation. Patients with the LDL-R gene defect appeared to have a higher level of low-density lipoprotein cholesterol (LDL-C), an increased incidence of xanthomas and coronary heart disease (CHD), but no relationships were found between the type of LDL-R gene mutations and their lipid levels or clinical signs of CHD. In contrast to Western data, our findings seemed to indicate a predominance of mutations in the ligand binding domain and an absence of Apo B-3500 gene mutation. The latter finding may offer a genetic basis as to why Asian patients with familial hypercholesterolaemia have lower LDL-C levels and less premature CHD than their Western counterparts.
    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics*
  5. Khoo KL, van Acker P, Defesche JC, Tan H, van de Kerkhof L, Heijnen-van Eijk SJ, et al.
    Clin Genet, 2000 Aug;58(2):98-105.
    PMID: 11005141 DOI: 10.1034/j.1399-0004.2000.580202.x
    The aim of this study was to detect mutations in the genes coding for the low-density lipoprotein receptor and apolipoprotein B in patients of Southeast Asian origin with clinically diagnosed familial hypercholesterolemia (FH) and to relate these findings with the observed lower incidence of coronary heart disease in this part of the world. A total of 86 unrelated patients with FH were selected on clinical grounds, and complete DNA analysis of the low-density lipoprotein (LDL)-receptor and apolipoprotein B (apoB) genes by DGGE and DNA-sequencing was performed. In the majority (73%) of the cohort studied, no mutations could be detected, even after extensive analysis of the LDL-receptor and apoB genes. However, the 22 patients with a mutation had significantly more xanthomas and a higher incidence of coronary heart disease and levels of low-density lipoproteins were also significantly different. There was no correlation between the type of the mutation and lipoprotein levels or clinical signs of atherosclerosis. The fact that the majority of the FH patients studied had no detectable mutation and that this group had a significant milder phenotype, suggests the presence of a third gene in the Southeast Asian population, predominantly leading to a disorder resembling a milder form of FH. A similar, but less frequent, trait has recently been described in a number of European families.
    Matched MeSH terms: Hyperlipoproteinemia Type II/ethnology; Hyperlipoproteinemia Type II/genetics*
  6. EAS Familial Hypercholesterolaemia Studies Collaboration, Vallejo-Vaz AJ, De Marco M, Stevens CAT, Akram A, Freiberger T, et al.
    Atherosclerosis, 2018 10;277:234-255.
    PMID: 30270054 DOI: 10.1016/j.atherosclerosis.2018.08.051
    BACKGROUND AND AIMS: Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries.

    METHODS: Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management.

    RESULTS: 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in ∼2/3 countries. Lipoprotein-apheresis is offered in ∼60% countries, although access is limited.

    CONCLUSIONS: FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed.

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/epidemiology; Hyperlipoproteinemia Type II/therapy*
  7. Qureshi N, Akyea RK, Dutton B, Humphries SE, Abdul Hamid H, Condon L, et al.
    Heart, 2021 12;107(24):1956-1961.
    PMID: 34521694 DOI: 10.1136/heartjnl-2021-319742
    OBJECTIVE: Familial hypercholesterolaemia (FH) is a common inherited disorder that remains mostly undetected in the general population. Through FH case-finding and direct access to genetic testing in primary care, this intervention study described the genetic and lipid profile of patients found at increased risk of FH and the outcomes in those with positive genetic test results.

    METHODS: In 14 Central England general practices, a novel case-finding tool (Familial Hypercholetserolaemia Case Ascertainment Tool, FAMCAT1) was applied to the electronic health records of 86 219 patients with cholesterol readings (44.5% of total practices' population), identifying 3375 at increased risk of FH. Of these, a cohort of 336 consenting to completing Family History Questionnaire and detailed review of their clinical data, were offered FH genetic testing in primary care.

    RESULTS: Genetic testing was completed by 283 patients, newly identifying 16 with genetically confirmed FH and 10 with variants of unknown significance. All 26 (9%) were recommended for referral and 19 attended specialist assessment. In a further 153 (54%) patients, the test suggested polygenic hypercholesterolaemia who were managed in primary care. Total cholesterol and low-density lipoprotein-cholesterol levels were higher in those patients with FH-causing variants than those with other genetic test results (p=0.010 and p=0.002).

    CONCLUSION: Electronic case-finding and genetic testing in primary care could improve identification of FH; and the better targeting of patients for specialist assessment. A significant proportion of patients identified at risk of FH are likely to have polygenic hypercholesterolaemia. There needs to be a clearer management plan for these individuals in primary care.

    TRIAL REGISTRATION NUMBER: NCT03934320.

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics; Hyperlipoproteinemia Type II/epidemiology*
  8. Noor Alicezah Mohd Kasim, Chua Yung An, Hapizah Nawawi
    MyJurnal
    Familial hypercholesterolaemia (FH), the commonest and serious but potentially treatable
    form of inherited dyslipidaemias, is characterised by severely elevated plasma low-density
    lipoprotein-cholesterol (LDL-C) level, which subsequently leads to premature coronary artery
    disease (pCAD). Effectiveness of FH early detection and treatment is supported by the
    outcome of several international cohort studies. Optimal FH management relies on
    prescription of statins either alone or together with other lipid-lowering therapies (LLT).
    Intensive lifestyle intervention is required in parallel with LLT, which should be commenced at
    diagnosis in adults and childhood. Treatment with high intensity statin should be started as
    soon as possible. Combination with ezetimibe and/or bile acid sequestrants is indicated if
    target LDL-C is not achieved. For FH patients in the very-high risk category, if their LDL-C
    targets are not achieved, despite being on maximally tolerated statin dose and ezetimibe,
    proprotein convertase subtilisin/kexin type1 inhibitor (PCSK9i) is recommended. In statin
    intolerance, ezetimibe alone, or in combination with PCSK9i may be considered. Clinical
    evaluation of response to treatment and safety are recommended to be done about 4-6 weeks
    following initiation of treatment. Homozygous FH (HoFH) patients should be treated with
    maximally tolerated intensive LLT and, when available, with lipoprotein apheresis. This review
    highlights the overall management, and optimal treatment combinations in FH in adults and
    children, newer LLT including PCSK9i, microsomal transfer protein inhibitor, allele-specific
    oligonucleotide to ApoB100 and PCSK9 mRNA. Family cascade screening and/or screening
    of high-risk individuals, is the most cost-effective way of identifying FH cases and initiating
    early and adequate LLT.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  9. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al.
    Eur J Prev Cardiol, 2015 Jul;22(7):849-54.
    PMID: 24776375 DOI: 10.1177/2047487314533218
    Familial hypercholesterolaemia (FH) is a dominantly inherited disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL) cholesterol and causes premature coronary heart disease. There are at least 20 million people with FH worldwide, but the majority remains undetected and current treatment is often suboptimal.To address this major gap in coronary prevention we present, from an international perspective, consensus-based guidance on the care of FH. The guidance was generated from seminars and workshops held at an international symposium. The recommendations focus on the detection, diagnosis, assessment and management of FH in adults and children, and set guidelines for clinical purposes. They also refer to best practice for cascade screening and risk notifying and testing families for FH, including use of genetic testing. Guidance on treatment is based on risk stratification, management of non-cholesterol risk factors and safe and effective use of LDL lowering therapies. Recommendations are given on lipoprotein apheresis. The use of emerging therapies for FH is also foreshadowed.This international guidance acknowledges evidence gaps, but aims to make the best use of contemporary practice and technology to achieve the best outcomes for the care of FH. It should accordingly be employed to inform clinical judgment and be adjusted for country-specific and local healthcare needs and resources.
    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/genetics; Hyperlipoproteinemia Type II/therapy*
  10. Azian M, Hapizah MN, Khalid BA, Khalid Y, Rosli A, Jamal R
    Malays J Pathol, 2006 Jun;28(1):7-15.
    PMID: 17694954 MyJurnal
    Familial hypercholesterolaemia (FH) and Familial defective apolipoprotein B100 (FDB) are autosomal dominant inherited diseases of lipid metabolism caused by mutations in the low density lipoprotein (LDL) receptor and apolipoprotein B 100 genes. FH is clinically characterised by elevated concentrations of total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), presence of xanthomata and premature atherosclerosis. Both conditions are associated with coronary artery disease but may be clinically indistinguishable. Seventy-two (72) FH patients were diagnosed based on the Simon Broome's criteria. Mutational screening was performed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Positive mutations were subjected to DNA sequencing for confirmation of the mutation. We successfully amplified all exons in the LDL receptor and apo B100 genes. DGGE was performed in all exons of the LDL receptor (except for exons 4-3', 18 and promoter region) and apo B100 genes. We have identified four different mutations in the LDL receptor gene but no mutation was detected in the apo B 100 gene. The apo B100 gene mutation was not detected on DGGE screening as sequencing was not performed for negative cases on DGGE technique. To our knowledge, the C234S mutation (exon 5) is a novel mutation worldwide. The D69N mutation (exon 3) has been reported locally while the R385W (exon 9) and R716G (exon 15) mutations have not been reported locally. However, only 4 mutations have been identified among 14/72 patients (19.4%) in 39 FH families. Specificity (1-false positive) of this technique was 44.7% based on the fact that 42/76 (55.3%) samples with band shifts showed normal DNA sequencing results. A more sensitive method needs to be addressed in future studies in order to fully characterise the LDLR and apo B100 genes such as denaturing high performance liquid chromatography. In conclusion, we have developed the DNA analysis for FH patients using PCR-DGGE technique. DNA analysis plays an important role to characterise the type of mutations and forms an adjunct to clinical diagnosis.
    Matched MeSH terms: Hyperlipoproteinemia Type II/genetics*
  11. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al.
    J Clin Lipidol, 2014 Mar-Apr;8(2):148-72.
    PMID: 24636175 DOI: 10.1016/j.jacl.2014.01.002
    Familial hypercholesterolemia (FH) is a dominantly inherited disorder present from birth that markedly elevates plasma low-density lipoprotein cholesterol and causes premature coronary heart disease. There are at least 20 million people with FH worldwide, but the majority remains undetected, and current treatment is often suboptimal. To address this major gap in coronary prevention we present, from an international perspective, consensus-based guidance on the care of FH. The guidance was generated from seminars and workshops held at an international symposium. The recommendations focus on the detection, diagnosis, assessment, and management of FH in adults and children and set guidelines for clinical purposes. They also refer to best practice for cascade screening and risk notifying and testing families for FH, including use of genetic testing. Guidance on treatment is based on risk stratification, management of noncholesterol risk factors, and the safe and effective use of low-density lipoprotein-lowering therapies. Recommendations are given on lipoprotein apheresis. The use of emerging therapies for FH is also foreshadowed. This international guidance acknowledges evidence gaps but aims to make the best use of contemporary practice and technology to achieve the best outcomes for the care of FH. It should accordingly be used to inform clinical judgment and be adjusted for country-specific and local healthcare needs and resources.
    Matched MeSH terms: Hyperlipoproteinemia Type II/metabolism; Hyperlipoproteinemia Type II/pathology*; Hyperlipoproteinemia Type II/therapy*
  12. Stein EA, Dann EJ, Wiegman A, Skovby F, Gaudet D, Sokal E, et al.
    J Am Coll Cardiol, 2017 Aug 29;70(9):1162-1170.
    PMID: 28838366 DOI: 10.1016/j.jacc.2017.06.058
    BACKGROUND: Homozygous familial hypercholesterolemia (HoFH), a rare genetic disorder, is characterized by extremely elevated levels of low-density lipoprotein cholesterol (LDL-C) and accelerated atherosclerotic cardiovascular disease. Statin treatment starts at diagnosis, but no statin has been formally evaluated in, or approved for, HoFH children.

    OBJECTIVES: The authors sought to assess the LDL-C efficacy of rosuvastatin versus placebo in HoFH children, and the relationship with underlying genetic mutations.

    METHODS: This was a randomized, double-blind, 12-week, crossover study of rosuvastatin 20 mg versus placebo, followed by 12 weeks of open-label rosuvastatin. Patients discontinued all lipid-lowering treatment except ezetimibe and/or apheresis. Clinical and laboratory assessments were performed every 6 weeks. The relationship between LDL-C response and genetic mutations was assessed by adding children and adults from a prior HoFH rosuvastatin trial.

    RESULTS: Twenty patients were screened, 14 randomized, and 13 completed the study. The mean age was 10.9 years; 8 patients were on ezetimibe and 7 on apheresis. Mean LDL-C was 481 mg/dl (range: 229 to 742 mg/dl) on placebo and 396 mg/dl (range: 130 to 700 mg/dl) on rosuvastatin, producing a mean 85.4 mg/dl (22.3%) difference (p = 0.005). Efficacy was similar regardless of age or use of ezetimibe or apheresis, and was maintained for 12 weeks. Adverse events were few and not serious. Patients with 2 defective versus 2 negative LDL receptor mutations had mean LDL-C reductions of 23.5% (p = 0.0044) and 14% (p = 0.038), respectively.

    CONCLUSIONS: This first-ever pediatric HoFH statin trial demonstrated safe and effective LDL-C reduction with rosuvastatin 20 mg alone or added to ezetimibe and/or apheresis. The LDL-C response in children and adults was related to underlying genetic mutations. (A Study to Evaluate the Efficacy and Safety of Rosuvastatin in Children and Adolescents With Homozygous Familial Hypercholesterolemia [HYDRA]; NCT02226198).

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/drug therapy*; Hyperlipoproteinemia Type II/genetics
  13. Nafikudin M, Nawawi H, Muid S, Annuar R, Yusoff K, Khalid BAK
    Med J Malaysia, 2003 Dec;58(5):647-52.
    PMID: 15190648
    Ultrasonographic measurements of the intima-media thickness (IMT) of common carotid arteries (CCA) were taken in 50 patients with familial hypercholesterolaemia (FH) and 57 patients with non-familial hypercholesterolemia (NFH). The lipid profile, body mass index (BMI) and waist-hip ratio (WHR) of each patient were recorded. In FH patients, the IMT was significantly higher in overweight and elevated WHR subgroups compared to the normal with significant correlations between BMI and WHR to the IMT. In NFH patients, the IMT was significantly higher in the elevated WHR compared to the normal subgroup but the correlations between either BMI or WHR to IMT were insignificant. These suggest that the environmentally modified anthropometric indices may have an effect on atherosclerosis in genetically determined hypercholesterolaemia in FH patients.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications; Hyperlipoproteinemia Type II/ultrasonography*
  14. Alicezah MK, Razali R, Rahman T, Hoh BP, Suhana NH, Muid S, et al.
    Malays J Pathol, 2014 Aug;36(2):131-7.
    PMID: 25194536 MyJurnal
    We report a rare case of homozygous familial hypercholesterolemia (HoFH), a 22-year-old Malay woman who presented initially with minor soft tissue injury due to a cycling accident. She was then incidentally found to have severe xanthelasma and hypercholesterolemia (serum TC 15.3 mmol/L and LDL-C 13.9 mmol/L). She was referred to the Specialized Lipid Clinic and was diagnosed with familial hypercholesterolemia (FH) based on the Simon Broome (SB) diagnostic criteria. There was a family history of premature coronary heart disease (CHD) in that three siblings had sudden cardiac death, and of consanguineous marriage in that her parents are cousins. DNA screening of LDLR and APOB genes was done by Polymerase Chain Reaction (PCR), followed by Denaturing High Performance Liquid Chromatography (DHPLC). Homozygous mutation C255S in Exon 5 of her LDLR gene was found. There was no mutation was found in Exon 26 and Exon 29 of the APOB gene. This report is to emphasize the importance of identifying patients with FH and cascade screening through established diagnostic criteria and genetic studies in order to ensure early detection and early treatment intervention to minimize the risk of developing CHD and related complications.
    Matched MeSH terms: Hyperlipoproteinemia Type II/genetics*
  15. Alex L, Chahil JK, Lye SH, Bagali P, Ler LW
    J Hum Genet, 2012 Jun;57(6):358-62.
    PMID: 22534770 DOI: 10.1038/jhg.2012.34
    Hypercholesterolemia is caused by different interactions of lifestyle and genetic determinants. At the genetic level, it can be attributed to the interactions of multiple polymorphisms, or as in the example of familial hypercholesterolemia (FH), it can be the result of a single mutation. A large number of genetic markers, mostly single nucleotide polymorphisms (SNP) or mutations in three genes, implicated in autosomal dominant hypercholesterolemia (ADH), viz APOB (apolipoprotein B), LDLR (low density lipoprotein receptor) and PCSK9 (proprotein convertase subtilisin/kexin type-9), have been identified and characterized. However, such studies have been insufficiently undertaken specifically in Malaysia and Southeast Asia in general. The main objective of this study was to identify ADH variants, specifically ADH-causing mutations and hypercholesterolemia-associated polymorphisms in multiethnic Malaysian population. We aimed to evaluate published SNPs in ADH causing genes, in this population and to report any unusual trends. We examined a large number of selected SNPs from previous studies of APOB, LDLR, PCSK9 and other genes, in clinically diagnosed ADH patients (n=141) and healthy control subjects (n=111). Selection of SNPs was initiated by searching within genes reported to be associated with ADH from known databases. The important finding was 137 mono-allelic markers (44.1%) and 173 polymorphic markers (55.8%) in both subject groups. By comparing to publicly available data, out of the 137 mono-allelic markers, 23 markers showed significant differences in allele frequency among Malaysians, European Whites, Han Chinese, Yoruba and Gujarati Indians. Our data can serve as reference for others in related fields of study during the planning of their experiments.
    Matched MeSH terms: Hyperlipoproteinemia Type II/genetics*
  16. Kyi WM, Isa MN, Rashid FA, Osman JM, Mansur MA
    Malays J Med Sci, 2000 Jan;7(1):16-21.
    PMID: 22844210
    Familial defective apolipoprotein B-100 (FDB) is an autosomal dominant genetic disorder associated with hypercholesterolaemia and premature coronary heart disease. FDB is caused by mutations in and around the codon 3500 of the apolipoprotein B (apo B) gene. Apo B R3500Q mutation is the first apo B mutation known to be associated with FDB and it is the most frequently reported apo B mutation in several different populations. The objective of the present study was to determine the association of apo B R3500Q mutation with elevated plasma cholesterol concentration in Kelantanese population in which both hypercholesterolaemia and coronary heart disease are common. Sixty-two Malay subjects with hyperlipidaemia, attending the lipid clinic at Hospital Universiti Sains Malaysia, Kelantan, were selected for this study. The DNA samples were analysed for the presence of apo B R3500Q mutation by polymerase chain reaction-based restriction fragment analysis method using mutagenic primers. This mutation was not detected in the subjects selected for this study. Apo B R3500Q mutation does not appear to be a common cause of hypercholesterolaemia in Kelantanese Malays.
    Matched MeSH terms: Hyperlipoproteinemia Type II
  17. Masaany M, Siti HS, Nurliza I, Mazita A
    Otolaryngol Head Neck Surg, 2008 Jun;138(6):803-4.
    PMID: 18503863 DOI: 10.1016/j.otohns.2008.02.020
    Cholesterol granuloma (CG) is a histologic description of foreign body giant cell formation toward cholesterol crystals. The majority of temporal bone CG is unilateral and most common in the petrous apex. Middle ear CG is usually the result of underlying ear diseases. Primary middle ear CG is very rare. Most reported CG has not been associated with familial hypercholesterolemia (FH). FH, an autosomal dominant disorder, manifests as high levels of serum cholesterol and low density lipoprotein (LDL) cholesterol. We report a rare case of FH and bilateral aggressive primary middle ear CG. This publication has been approved by the IRB, Hospital Alor Setar.
    Matched MeSH terms: Hyperlipoproteinemia Type II/complications*; Hyperlipoproteinemia Type II/diagnosis; Hyperlipoproteinemia Type II/therapy
  18. Lye SH, Chahil JK, Bagali P, Alex L, Vadivelu J, Ahmad WA, et al.
    PLoS One, 2013;8(4):e60729.
    PMID: 23593297 DOI: 10.1371/journal.pone.0060729
    Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by elevations in total cholesterol (TC) and low density lipoprotein cholesterol (LDLc). Development of FH can result in the increase of risk for premature cardiovascular diseases (CVD). FH is primarily caused by genetic variations in Low Density Lipoprotein Receptor (LDLR), Apolipoprotein B (APOB) or Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) genes. Although FH has been extensively studied in the Caucasian population, there are limited reports of FH mutations in the Asian population. We investigated the association of previously reported genetic variants that are involved in lipid regulation in our study cohort. A total of 1536 polymorphisms previously implicated in FH were evaluated in 141 consecutive patients with clinical FH (defined by the Dutch Lipid Clinic Network criteria) and 111 unrelated control subjects without FH using high throughput microarray genotyping platform. Fourteen Single Nucleotide Polymorphisms (SNPs) were found to be significantly associated with FH, eleven with increased FH risk and three with decreased FH risk. Of the eleven SNPs associated with an increased risk of FH, only one SNP was found in the LDLR gene, seven in the APOB gene and three in the PCSK9 gene. SNP rs12720762 in APOB gene is associated with the highest risk of FH (odds ratio 14.78, p<0.001). Amongst the FH cases, 108 out of 141 (76.60%) have had at least one significant risk-associated SNP. Our study adds new information and knowledge on the genetic polymorphisms amongst Asians with FH, which may serve as potential markers in risk prediction and disease management.
    Matched MeSH terms: Hyperlipoproteinemia Type II/genetics*; Hyperlipoproteinemia Type II/metabolism*; Hyperlipoproteinemia Type II/pathology
  19. Mohd Nor NS, Al-Khateeb AM, Chua YA, Mohd Kasim NA, Mohd Nawawi H
    BMC Pediatr, 2019 04 11;19(1):106.
    PMID: 30975109 DOI: 10.1186/s12887-019-1474-y
    BACKGROUND: Familial hypercholesterolaemia (FH) is the most common inherited metabolic disease with an autosomal dominant mode of inheritance. It is characterised by raised serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c), leading to premature coronary artery disease. Children with FH are subjected to early and enhanced atherosclerosis, leading to greater risk of coronary events, including premature coronary artery disease. To the best of our knowledge, this is the first report of a pair of monochorionic diamniotic identical twins with a diagnosis of heterozygous FH, resulting from mutations in both LDLR and ABCG8 genes.

    CASE PRESENTATION: This is a rare case of a pair of 8-year-old monochorionic diamniotic identical twin, who on family cascade screening were diagnosed as definite FH, according to the Dutch Lipid Clinic Criteria (DLCC) with a score of 10. There were no lipid stigmata noted. Baseline lipid profiles revealed severe hypercholesterolaemia, (TC = 10.5 mmol/L, 10.6 mmol/L; LDL-c = 8.8 mmol/L, 8.6 mmol/L respectively). Their father is the index case who initially presented with premature CAD, and subsequently diagnosed as FH. Family cascade screening identified clinical FH in other family members including their paternal grandfather who also had premature CAD, and another elder brother, aged 10 years. Genetic analysis by targeted next-generation sequencing using MiSeq platform (Illumina) was performed to detect mutations in LDLR, APOB100, PCSK9, ABCG5, ABCG8, APOE and LDLRAP1 genes. Results revealed that the twin, their elder brother, father and grandfather are heterozygous for a missense mutation (c.530C > T) in LDLR that was previously reported as a pathogenic mutation. In addition, the twin has heterozygous ABCG8 gene mutation (c.55G > C). Their eldest brother aged 12 years and their mother both had normal lipid profiles with absence of LDLR gene mutation.

    CONCLUSION: A rare case of Asian monochorionic diamniotic identical twin, with clinically diagnosed and molecularly confirmed heterozygous FH, due to LDLR and ABCG8 gene mutations have been reported. Childhood FH may not present with the classical physical manifestations including the pathognomonic lipid stigmata as in adults. Therefore, childhood FH can be diagnosed early using a combination of clinical criteria and molecular analyses.

    Matched MeSH terms: Hyperlipoproteinemia Type II/blood; Hyperlipoproteinemia Type II/genetics*
  20. Mohd Kasim NA, Al-Khateeb A, Chua YA, Sanusi AR, Mohd Nawawi H
    Malays J Pathol, 2021 Apr;43(1):87-93.
    PMID: 33903311
    Homozygous familial hypercholesterolaemia (HoFH) is a rare genetic disorder of lipoprotein metabolism mainly due to mutation of the low-density lipoprotein (LDL)-receptor gene (LDLR). It is a life-threatening disease that causes accelerated, multi-vessel atherosclerosis presented in early childhood. Pregnancy in HoFH may pose early coronary morbidity and mortality to both the foetus and mother. The combination of HoFH and pregnancy can be a fatal condition. While statins are very effective in lowering low-density lipoprotein cholesterol (LDL-C) levels, they are generally contraindicated during pregnancy, thus their use during pregnancy is uncommon. On the other hand, lipid apheresis (LA) has turned into an effective treatment to control cholesterol level amid pregnancy. However, the procedure is not widely available in our region. To date, there are scarcely documented case reports of HoFH in pregnancy in which the majority of them underwent LA to keep LDL-C at a low level. We report a rare case of successful pregnancy outcome of HoFH patient treated with lipid-lowering drugs including statin without LA therapy. Apart from that, we also discussed the genetic findings of the proband and all screened family members in which to the best of our knowledge, the first study using the whole-exome sequencing technique to identify the causative gene mutations for familial hypercholesterolaemia among the Malaysian population.
    Matched MeSH terms: Hyperlipoproteinemia Type II
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links