Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Hellal K, Maulidiani M, Ismail IS, Tan CP, Abas F
    Molecules, 2020 Mar 10;25(5).
    PMID: 32164186 DOI: 10.3390/molecules25051247
    Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  2. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  3. Wong PL, Zolkeflee NKZ, Ramli NS, Tan CP, Azlan A, Tham CL, et al.
    J Ethnopharmacol, 2024 Jan 10;318(Pt B):117015.
    PMID: 37572932 DOI: 10.1016/j.jep.2023.117015
    ETHNOPHARMACOLOGICAL RELEVANCE: Ardisia elliptica Thunb. (AE) (Primulaceae) is a medicinal plant found in the Malay Peninsula and has been traditionally used to treat diabetes. However, limited studies to date in providing scientific evidence to support the antidiabetic efficacy of this plant by in-vitro and in-vivo models.

    AIM OF THE STUDY: To investigate the anti-hyperglycemic potential of AE through in-vitro enzymatic activities and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat models using proton-nuclear magnetic resonance (1H-NMR)-based metabolomics approach.

    MATERIALS AND METHODS: Anti-α-amylase and anti-α-glucosidase activities of the hydroethanolic extracts of AE were evaluated. The absolute quantification of bioactive constituents, using ultra-high performance liquid chromatography (UHPLC) was performed for the most active extract. Three different dosage levels of the AE extract were orally administered for 4 weeks consecutively in STZ-NA induced diabetic rats. Physical assessments, biochemical analysis, and an untargeted 1H-NMR-based metabolomics analysis of the urine and serum were carried out on the animal model.

    RESULTS: Type 2 diabetes mellitus (T2DM) rat model was successfully developed based on the clear separation observed between the STZ-NA induced diabetic and normal non-diabetic groups. Discriminating biomarkers included glucose, citrate, succinate, allantoin, hippurate, 2-oxoglutarate, and 3-hydroxybutyrate, as determined through an orthogonal partial least squares-discriminant analysis (OPLS-DA) model. A treatment dosage of 250 mg/kg body weight (BW) of standardized 70% ethanolic AE extract mitigated increase in serum glucose, creatinine, and urea levels, providing treatment levels comparable to that obtained using metformin, with flavonoids primarily contribute to the anti-hyperglycemic activities. Urinary metabolomics disclosed that the following disturbed metabolism pathways: the citrate cycle (TCA cycle), butanoate metabolism, glycolysis and gluconeogenesis, pyruvate metabolism, and synthesis and degradation of ketone bodies, were ameliorated after treatment with the standardized AE extract.

    CONCLUSIONS: This study demonstrated the first attempt at revealing the therapeutic effect of oral treatment with 250 mg/kg BW of standardized AE extract on chemically induced T2DM rats. The present study provides scientific evidence supporting the ethnomedicinal use of Ardisia elliptica and further advances the understanding of the fundamental molecular mechanisms affected by this herbal antidote.

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  4. Romero Rocamora C, Ramasamy K, Meng Lim S, Majeed ABA, Agatonovic-Kustrin S
    J Pharm Biomed Anal, 2020 Jan 30;178:112909.
    PMID: 31618702 DOI: 10.1016/j.jpba.2019.112909
    A high-performance thin-layer chromatography (HPTLC) method combined with effect-directed-analysis (EDA) was developed to screen the antioxidant, neuroprotective and antidiabetic effects in essential oils derived from lavender flower, lemon myrtle, oregano, peppermint, sage, and rosemary leaves (Lamiaceae family). HPTLC hyphenated with microchemical (DPPH•, p-anisaldehyde, and ferric chloride) derivatizations, was used to evaluate antioxidant activity, presence of phytosterols and terpenoids, and polyphenolic content, while the combination with biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to asses α-amylase and AChE inhibitory activities. The superior antioxidant activity of oregano leaf extract is attributed to the presence of high levels of aromatic compounds, like polyphenolic acids. The strongest α-amylase inhibition was observed in lemon myrtle and rosemary plus extracts due to the presence of monoterpenes. Rosemary and sage extracts exhibit the highest AChE inhibition activity, with 1 μL essential oils being more potent than the recommended daily dose of donepezil. This superior neuroprotection was attributed to the presences of di- and triterpenes that displayed strong AChE inhibition and antioxidant potential in DPPH• free radical assay. Antioxidant activity was related to phenolic content (R = 0.49), while α-amylase inhibitory activity was positively related to antioxidant activity (R = 0.20) and terpenoid/sterol content (R = 0.31). AChE inhibitory activity was correlated (R = 0.80) to the combined effect of phenolics and terpenoids. Thus, the superior AChE inhibitory and neuroprotection potential of rosemary and sage essential oils could be attributed to joint effects of main phenolic and terpene constituents. The hyphenated HPTLC method provided rapid bioanalytical profiling of highly complex essential oil samples.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  5. Tan DC, Kassim NK, Ismail IS, Hamid M, Ahamad Bustamam MS
    Biomed Res Int, 2019;2019:7603125.
    PMID: 31275982 DOI: 10.1155/2019/7603125
    Paederia foetida L. (Rubiaceae) is a climber which is widely distributed in Asian countries including Malaysia. The plant is traditionally used to treat various diseases including diabetes. This study is to evaluate the enzymatic inhibition activity of Paederia foetida twigs extracts and to identify the metabolites responsible for the bioactivity by gas chromatography-mass spectrometry (GC-MS) metabolomics profiling. Three different twig extracts, namely, hexane (PFH), chloroform (PFC), and methanol (PFM), were submerged for their α-amylase and α-glucosidase inhibition potential in 5 replicates for each. Results obtained from the loading column scatter plot of orthogonal partial least square (OPLS) model revealed the presence of 12 bioactive compounds, namely, dl-α-tocopherol, n-hexadecanoic acid, 2-hexyl-1-decanol, stigmastanol, 2-nonadecanone, cholest-8(14)-en-3-ol, 4,4-dimethyl-, (3β,5α)-, stigmast-4-en-3-one, stigmasterol, 1-ethyl-1-tetradecyloxy-1-silacyclohexane, ɣ-sitosterol, stigmast-7-en-3-ol, (3β,5α,24S)-, and α-monostearin. In silico molecular docking was carried out using the crystal structure α-amylase (PDB ID: 4W93) and α-glucosidase (PDB ID: 3WY1). α-Amylase-n-hexadecanoic acid exhibited the lowest binding energy of -2.28 kcal/mol with two hydrogen bonds residue, namely, LYS178 and TYR174, along with hydrophobic interactions involving PRO140, TRP134, SER132, ASP135, and LYS172. The binding interactions of α-glucosidase-n-hexadecanoic acid complex ligand also showed the lowest binding energy among 5 major compounds with the energy value of -4.04 kcal/mol. The complex consists of one hydrogen bond interacting residue, ARG437, and hydrophobic interactions with ALA444, ASP141, GLN438, GLU432, GLY374, LEU373, LEU433, LYS352, PRO347, THR445, HIS348, and PRO351. The study provides informative data on the potential antidiabetic inhibitors identified in Paederia foetida twigs, indicating the plant has the therapeutic effect properties to manage diabetes.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  6. Widyawati T, Yusoff NA, Bello I, Asmawi MZ, Ahmad M
    Molecules, 2022 Oct 12;27(20).
    PMID: 36296407 DOI: 10.3390/molecules27206814
    (1) Background: An earlier study on the hypoglycemic activity of S. polyanthum (Wight.) leaf methanol extract identified squalene as the major chemical compound. The present study was conducted to assess the hypoglycemic effect of fractions and subfractions of the methanol extract of S. polyanthum compared to the squalene using a bioassay-guided in vivo study. (2) Methods: The methanol extract was fractionated using the liquid−liquid fractionation method. Streptozotocin-induced type 1 diabetic rat was used to study the hypoglycemic effect. (3) Results: The findings showed that chloroform fraction significantly (p < 0.05) lowered blood glucose levels of diabetic rats as compared to the control. Further fractionation of chloroform fraction yielded subfraction-1 and -2, whereby subfraction-1 exhibited a higher blood-glucose-lowering effect. The lipid profile test showed that the total cholesterol level of subfraction-1 and squalene-treated groups decreased significantly (p < 0.05). An immunohistochemistry study revealed that none of the treatments regenerated pancreatic β-cells. Gas chromatography−mass spectrophotometer analysis identified the presence of squalene in the active methanol extract, chloroform fraction, and subfraction-1. In silico analysis revealed a higher affinity of squalene against protein receptors that control lipid metabolism than metformin. (4) Conclusions: Data obtained from the present work suggested the crude methanol extract exerted the highest hypoglycemic effect compared to fraction, subfraction, and squalene, confirming synergistic effect may be responsible for the hypoglycemic activity of S. polyanthum.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  7. Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, et al.
    Molecules, 2020 Nov 24;25(23).
    PMID: 33255206 DOI: 10.3390/molecules25235491
    In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  8. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M, Ali HTM
    SAR QSAR Environ Res, 2019 Jun;30(6):403-416.
    PMID: 31122062 DOI: 10.1080/1062936X.2019.1607899
    Time-varying binary gravitational search algorithm (TVBGSA) is proposed for predicting antidiabetic activity of 134 dipeptidyl peptidase-IV (DPP-IV) inhibitors. To improve the performance of the binary gravitational search algorithm (BGSA) method, we propose a dynamic time-varying transfer function. A new control parameter,
    μ
    , is added in the original transfer function as a time-varying variable. The TVBGSA-based model was internally and externally validated based on

    Q


    int


    2

    ,

    Q



    L
    G
    O



    2

    ,

    Q



    B
    o
    o
    t



    2

    ,


    M
    S






    E





    t
    r
    a
    i
    n





    ,

    Q



    e
    x
    t



    2

    ,


    M
    S






    E





    t
    e
    s
    t





    , Y-randomization test, and applicability domain evaluation. The validation results indicate that the proposed TVBGSA model is robust and not due to chance correlation. The descriptor selection and prediction performance of TVBGSA outperform BGSA method. TVBGSA shows higher

    Q


    int


    2

    of 0.957,

    Q



    L
    G
    O



    2

    of 0.951,

    Q



    B
    o
    o
    t



    2

    of 0.954,

    Q



    e
    x
    t



    2

    of 0.938, and lower


    M
    S






    E





    t
    r
    a
    i
    n





    and


    M
    S






    E





    t
    e
    s
    t





    compared to obtained results by BGSA, indicating the best prediction performance of the proposed TVBGSA model. The results clearly reveal that the proposed TVBGSA method is useful for constructing reliable and robust QSARs for predicting antidiabetic activity of DPP-IV inhibitors prior to designing and experimental synthesizing of new DPP-IV inhibitors.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  9. Misbah H, Aziz AA, Aminudin N
    PMID: 23718315 DOI: 10.1186/1472-6882-13-118
    Diabetes is a serious metabolic disorder affecting the metabolism of carbohydrate, protein and fat. A number of studies have shown that diabetes mellitus is associated with oxidative stress, leading to an increased production of reactive oxygen species. Ficus deltoidea is traditionally used in Malaysia for regulating blood sugar, blood pressure and cholesterol levels. The use of F. deltoidea as an alternative medicinal herb is increasingly gaining popularity with the sale of F. deltoidea tea bags and capsules in the local market. The present study was undertaken to investigate the antidiabetic and antioxidant activities of the fruits from different varieties of F. deltoidea, employing in vitro methods.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  10. Forid MS, Rahman MA, Aluwi MFFM, Uddin MN, Roy TG, Mohanta MC, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361788 DOI: 10.3390/molecules26154634
    This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  11. Ablat A, Mohamad J, Awang K, Shilpi JA, Arya A
    ScientificWorldJournal, 2014;2014:786130.
    PMID: 24688431 DOI: 10.1155/2014/786130
    The ethanol extract of B. javanica seed was fractionated with solvents of different polarities and tested for antioxidant activities by several assays including DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), ferrous ion chelating activity (FCA), and nitric oxide radical scavenging activity (NORSA) along with their polyphenolic contents. Antidiabetic activity was evaluated both in vitro and in vivo using a glycogen phosphorylase α (GPα) inhibition assay and oral glucose tolerance test (OGTT) in nondiabetic rats. The ethyl acetate fraction (EAF), rich in tannin, exhibited the strongest antioxidant activities to DPPH, FRAP, and NORSA, except for FCA. The EAF also exerted a dose-depended inhibition of GPα (IC50 = 0.75 mg/ml). Further evaluation of hypoglycemic effect on OGGT indicated that rats treated with EAF (125 mg/kg bw) showed a 39.91% decrease (P < 0.05) in blood glucose levels at 30 min, and continuous fall (P < 0.05) of 28.89% and 20.29% was observed in the following hours (60 and 90 min) compared to the normal control during OGTT. The EAF was applied to polyamide column chromatography, and the resulting tannin-free fraction was tested for both GPα inhibition and antioxidant (DPPH only) activity. The GP α inhibitory activity was retained, while antioxidant activity was lost (4.6-fold) after tannin removal. These results concluded that the GPα inhibitory activity initially detected was primarily due to the compounds other than tannins, whereas antioxidant activity was mainly due to the tannins.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  12. Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A
    Int J Biol Sci, 2015;11(5):508-24.
    PMID: 25892959 DOI: 10.7150/ijbs.11241
    Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  13. Ali RB, Atangwho IJ, Kaur N, Abraika OS, Ahmad M, Mahmud R, et al.
    Molecules, 2012 Apr 30;17(5):4986-5002.
    PMID: 22547320 DOI: 10.3390/molecules17054986
    An earlier anti-hyperglycemic study with serial crude extracts of Phaleria macrocarpa (PM) fruit indicated methanol extract (ME) as the most effective. In the present investigation, the methanol extract was further fractionated to obtain chloroform (CF), ethyl acetate (EAF), n-butanol (NBF) and aqueous (AF) fractions, which were tested for antidiabetic activity. The NBF reduced blood glucose (p < 0.05) 15 min after administration, in an intraperitoneal glucose tolerance test (IPGTT) similar to metformin. Moreover, it lowered blood glucose in diabetic rats by 66.67% (p < 0.05), similar to metformin (51.11%), glibenclamide (66.67%) and insulin (71.43%) after a 12-day treatment, hence considered to be the most active fraction. Further fractionation of NBF yielded sub-fractions I (SFI) and II (SFII), and only SFI lowered blood glucose (p < 0.05), in IPGTT similar to glibenclamide. The ME, NBF, and SFI correspondingly lowered plasma insulin (p < 0.05) and dose-dependently inhibited glucose transport across isolated rat jejunum implying an extra-pancreatic mechanism. Phytochemical screening showed the presence of flavonoids, terpenes and tannins, in ME, NBF and SFI, and LC-MS analyses revealed 9.52%, 33.30% and 22.50% mangiferin respectively. PM fruit possesses anti-hyperglycemic effect, exerted probably through extra-pancreatic action. Magniferin, contained therein may be responsible for this reported activity.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  14. Sivasothy Y, Loo KY, Leong KH, Litaudon M, Awang K
    Phytochemistry, 2016 Feb;122:265-269.
    PMID: 26712615 DOI: 10.1016/j.phytochem.2015.12.007
    A dimeric acylphenol and a potent α-glucosidase inhibitor, giganteone D (IC50 5.05μM), was isolated and characterized from the bark of Myristica cinnamomea King. The bark also yielded an acylphenol with an unprecedented skeleton for which the name cinnamomeone A (IC50 358.80μM) was proposed. Their structures were established by means of NMR and MS spectrometric analyses. The Lineweaver-Burk plot of giganteone D indicated that it was a mixed-type inhibitor. This is the first report on the α-glucosidase inhibiting potential of acylphenols.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  15. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al.
    Fitoterapia, 2015 Apr;102:182-8.
    PMID: 25665941 DOI: 10.1016/j.fitote.2015.01.019
    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  16. Quek A, Kassim NK, Lim PC, Tan DC, Mohammad Latif MA, Ismail A, et al.
    Pharm Biol, 2021 Dec;59(1):964-973.
    PMID: 34347568 DOI: 10.1080/13880209.2021.1948065
    CONTEXT: Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones.

    OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents.

    MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays.

    RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM).

    DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  17. Ablat A, Halabi MF, Mohamad J, Hasnan MH, Hazni H, Teh SH, et al.
    BMC Complement Altern Med, 2017 Feb 06;17(1):94.
    PMID: 28166749 DOI: 10.1186/s12906-017-1610-x
    Brucea javanica (B. javanica) seeds, also known as "Melada pahit" in Indo-Malay region are traditionally used to treat diabetes. The objective of this study was to determine antidiabetic, antioxidant and anti-inflammatory effects of B. javanica seeds on nicotinamide (NA)-streptozotocin (STZ) induced type 2 diabetic (T2D) rats and to analyze its chemical composition that correlate with their pharmacological activities.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  18. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, et al.
    Molecules, 2013 Aug 15;18(8):9770-84.
    PMID: 23955322 DOI: 10.3390/molecules18089770
    Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids--vindoline I, vindolidine II, vindolicine III and vindolinine IV--were isolated and identified from the dichloromethane extract (DE) of this plant's leaves. DE and compounds I-III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL). All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II-IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B) inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H₂O₂-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  19. Jadhav PB, Jadhav SB, Zehravi M, Mubarak MS, Islam F, Jeandet P, et al.
    Molecules, 2022 Dec 24;28(1).
    PMID: 36615348 DOI: 10.3390/molecules28010149
    Dipeptidyl peptidase-4 (DPP-IV) inhibitors are known as safe and well-tolerated antidiabetic medicine. Therefore, the aim of the present work was to synthesize some carbohydrazide derivatives (1a-5d) as DPP-IV inhibitors. In addition, this work involves simulations using molecular docking, ADMET analysis, and Lipinski and Veber's guidelines. Wet-lab synthesis was used to make derivatives that met all requirements, and then FTIR, NMR, and mass spectrometry were used to confirm the structures and perform biological assays. In this context, in vitro enzymatic and in vivo antidiabetic activity evaluations were carried out. None of the molecules had broken the majority of the drug-likeness rules. Furthermore, these molecules were put through additional screening using molecular docking. In molecular docking experiments (PDB ID: 2P8S), many molecules displayed more potent interactions than native ligands, exhibiting more hydrogen bonds, especially those with chloro- or fluoro substitutions. Our findings indicated that compounds 5b and 4c have IC50 values of 28.13 and 34.94 µM, respectively, under in vitro enzymatic assays. On the 21st day of administration to animals, compound 5b exhibited a significant reduction in serum blood glucose level (157.33 ± 5.75 mg/dL) compared with the diabetic control (Sitagliptin), which showed 280.00 ± 13.29 mg/dL. The antihyperglycemic activity showed that the synthesized compounds have good hypoglycemic potential in fasting blood glucose in the type 2 diabetes animal model (T2DM). Taken all together, our findings indicate that the synthesized compounds exhibit excellent hypoglycemic potential and could be used as leads in developing novel antidiabetic agents.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  20. Bayrami A, Ghorbani E, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Bayrami M
    Ultrason Sonochem, 2019 Nov;58:104613.
    PMID: 31450359 DOI: 10.1016/j.ultsonch.2019.104613
    The leaf extract of a medicinally important plant, watercress (Nasturtium officinale), was obtained through an ultrasound-facilitated method and utilized for the preparation of ZnO nanoparticles via a joint ultrasound-microwave assisted procedure. The characteristics of the extract enriched nanoparticles (Ext/ZnO) were determined by SEM, TEM, XRD, EDX, BET, FTIR, TGA, and UV-Vis DRS analyses and compared to that of ZnO prepared in the absence of the extract (ZnO). The presence of carbon and carbonaceous bonds, changes in the morphology, size, band gap energy, and weight-decay percentage were a number of differences between ZnO and Ext/ZnO that confirmed the link of extract over nanoparticles. Ext/ZnO, watercress leaf extract, ZnO, and insulin therapies were administrated to treat alloxan-diabetic Wister rats and their healing effectiveness results were compared to one another. The serum levels of the main diabetic indices such as insulin, fasting blood glucose, and lipid profile (total triglyceride, total cholesterol, and high-density lipoprotein cholesterol) were estimated for healthy, diabetic, and the rats rehabilitated with the studied therapeutic agents. The watercress extract-enriched ZnO nanoparticles offered the best performance and suppressed the diabetic status of rats. Moreover, both ZnO samples satisfactory inhibited the activities of Staphylococcus aureus and Escherichia coli bacteria. Based on the results, the application of Nasturtium officinale leaf extract can strongly empower ZnO nanoparticles towards superior antidiabetic and enhanced antibacterial activities.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links