Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Menon V
    Med J Malaysia, 2012 Jun;67(3):353-4; quiz 355.
    PMID: 23082439 MyJurnal
    Target blood sugar levels in diabetes are achieved through manipulation of diet, exercise and medication. A change in any one of these three things can skew blood sugar levels and create complications associated with hyperglycemia or hypoglycemia. Fasting during the month of Ramadan is a religious activity that devout Muslims practice whether they are diabetic or not. Since such fasting involves abstinence from food and water for twelve hours or more during the day from dawn to dusk, it is evident that advice regarding exercise and medication will have to be modified during this period.
    Matched MeSH terms: Insulin/administration & dosage
  2. Wong TW, Sumiran N
    J Pharm Pharmacol, 2014 May;66(5):646-57.
    PMID: 24329400 DOI: 10.1111/jphp.12192
    Objective: Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties.

    Methods: The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated.

    Key findings: Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation.

    Conclusion: Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles.

    Keywords: Tween 80; alginate; insulin; nanoparticle; pectin.
    Matched MeSH terms: Insulin/administration & dosage*
  3. Wong TW
    Recent Pat Drug Deliv Formul, 2009 Jan;3(1):8-25.
    PMID: 19149726 DOI: 10.2174/187221109787158346
    The global burden of diabetes is estimated to escalate from about 171 million in 2000 to 366 million people in 2030. The routine of diabetes treatment by injection of insulin incurs pain and has been one major factor negating the quality of life of diabetic patients. The possibility of administering insulin via alternative routes such as oral and nasal pathways has been investigated over the years, but with insulin experiencing risks of enzymatic degradation and poor transmucosal absorption. This leads to the rising needs to develop new formulation strategies emphasizing on the assembly of insulin and excipients into a physical structure to maintain the stability and increase the bioavailability of insulin. Chitosan and its derivatives or salts have been widely investigated as functional excipients of delivering insulin via oral, nasal and transdermal routes. The overview of various recent patented strategies on non-injection insulin delivery denotes the significance of chitosan for its mucoadhesive and able to protect the insulin from enzymatic degradation, prolong the retention time of insulin, as well as, open the inter-epithelial tight junction to facilitate systemic insulin transport. The chitosan can be employed to strengthen the physicochemical stability of insulin and multi-particulate matrix. The introduction of chitosan coat or co-formulation of chitosan with cationic gelatin or electrolytes which provide solidified or partially crosslinked structures retain and/or enhance the positive charges of dosage form necessary to induce mucoadhesiveness. The chitosan is modifiable chemically to produce water-soluble low molecular weight polymer which renders insulin able to be processed under mild conditions, and sulphated chitosan which markedly opens the paracellular channels for insulin transport. Combination of chitosan and fatty acid as hydrophobic nanoparticles promotes the insulin absorption via lymphoid tissue. Attainment of optimized formulations with higher levels of pharmacological bioavailability is deemed possible in future through targeted delivery of insulin using chitosan with specific adhesiveness to the intended absorption mucosa.
    Matched MeSH terms: Insulin/administration & dosage*
  4. Zaman Huri H, Permalu V, Vethakkan SR
    PLoS One, 2014;9(9):e106505.
    PMID: 25181406 DOI: 10.1371/journal.pone.0106505
    Sliding-scale and basal-bolus insulin regimens are two options available for the treatment of severe or acute hyperglycemia in type 2 diabetes mellitus patients. Although its use is not recommended, sliding-scale insulin therapy is still being used widely. The aims of the study were to compare the glycemic control achieved by using sliding-scale or basal-bolus regimens for the management of severe or acute hyperglycemia in patients with type 2 diabetes and to analyze factors associated with the types of insulin therapy used in the management of severe or acute hyperglycemia. This retrospective study was conducted using the medical records of patients with acute or severe hyperglycemia admitted to a hospital in Malaysia from January 2008 to December 2012. A total of 202 patients and 247 admissions were included. Patients treated with the basal-bolus insulin regimen attained lower fasting blood glucose (10.8 ± 2.3 versus 11.6 ± 3.5 mmol/L; p = 0.028) and mean glucose levels throughout severe/acute hyperglycemia (12.3 ± 1.9 versus 12.8 ± 2.2; p = 0.021) compared with sliding-scale insulin regimens. Diabetic ketoacidosis (p = 0.043), cardiovascular diseases (p = 0.005), acute exacerbation of bronchial asthma (p = 0.010), and the use of corticosteroids (p = 0.037) and loop diuretics (p = 0.016) were significantly associated with the type of insulin regimen used. In conclusion, type 2 diabetes patients with severe and acute hyperglycemia achieved better glycemic control with the basal-bolus regimen than with sliding-scale insulin, and factors associated with the insulin regimen used could be identified.
    Matched MeSH terms: Insulin/administration & dosage*
  5. Wong TW, Sumiran N, Mokhtar MT, Kadir A
    Pharm Biol, 2012 Nov;50(11):1463-6.
    PMID: 22889006 DOI: 10.3109/13880209.2012.679985
    In oral insulin delivery, blood glucose profiles of a subject can be a function of complicated transfer of water and insulin between gastrointestinal and blood compartments.
    Matched MeSH terms: Insulin/administration & dosage
  6. Chiavaroli V, Derraik JGB, Jalaludin MY, Albert BB, Ramkumar S, Cutfield WS, et al.
    Pediatr Diabetes, 2019 11;20(7):892-900.
    PMID: 31237756 DOI: 10.1111/pedi.12881
    BACKGROUND: Partial remission (PREM) by the insulin dose-adjusted HbA1c (IDAA1c) method has not been evaluated for the combined associations of ethnicity and socioeconomic status in children and adolescents with type 1 diabetes (T1D).

    OBJECTIVE: To investigate prevalence and predictors of PREM defined by IDAA1c.

    METHODS: Six hundred fourteen of 678 children (aged <15 years) with new-onset T1D (2000-2013) from a regional pediatric diabetes service (Auckland, New Zealand).

    RESULTS: Overall rate of PREM at 3 months was 42.4%, and lower in Māori/Pacific children (28.6%; P = .006) and those of other ethnicities (28.8%; P = .030) compared with New Zealand Europeans (50.4%). Comparing the most and least deprived socioeconomic quintiles, the odds of PREM were lower among the most deprived (adjusted odds ratio [aOR] 0.44; P = .019). Lower rates of PREM were seen in children aged 0 to 4.9 years (23.8%) and 10 to 14 years (40.9%) than in children aged 5 to 9.9 years (57.4%; P

    Matched MeSH terms: Insulin/administration & dosage*
  7. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
    Matched MeSH terms: Insulin/administration & dosage
  8. Frid AH, Hirsch LJ, Menchior AR, Morel DR, Strauss KW
    Mayo Clin Proc, 2016 Sep;91(9):1224-30.
    PMID: 27594186 DOI: 10.1016/j.mayocp.2016.06.012
    From February 1, 2014, through June 30, 2015, 13,289 insulin-injecting patients from 423 centers in 42 countries participated in one of the largest surveys ever performed in diabetes. The first results of this survey are published elsewhere in this issue. Herein we report that the most common complication of injecting insulin is lipohypertrophy (LH), which was self-reported by 29.0% of patients and found by physical examination in 30.8% by health care professionals (HCPs). Patients with LH consumed a mean of 10.1 IU more insulin daily than patients without LH. Glycated hemoglobin levels averaged 0.55% higher in patients with vs without LH. Lipohypertrophy was associated with higher rates of unexplained hypoglycemia and glycemic variability as well as more frequent diabetic ketoacidosis, incorrect rotation of injection sites, use of smaller injection zones, longer duration of insulin use, and reuse of pen needles (each Pinsulin injection practices.
    Study sites: 423 centers in 42 countries (Malaysia contributed 51 patients from two hospital study sites)
    Matched MeSH terms: Insulin/administration & dosage*
  9. Frid AH, Hirsch LJ, Menchior AR, Morel DR, Strauss KW
    Mayo Clin Proc, 2016 Sep;91(9):1212-23.
    PMID: 27594185 DOI: 10.1016/j.mayocp.2016.06.011
    From February 1, 2014, through June 30, 2015, 13,289 insulin-injecting patients from 423 centers in 42 countries took part in one of the largest surveys ever performed in diabetes. The goal was to assess patient characteristics, as well as historical and practical aspects of their injection technique. Results show that 4- and 8-mm needle lengths are each used by nearly 30% of patients and 5- and 6-mm needles each by approximately 20%. Higher consumption of insulin (as measured by total daily dose) is associated with having lipohypertrophy (LH), injecting into LH, leakage from the injection site, and failing to reconstitute cloudy insulin. Glycated hemoglobin values are, on average, 0.5% higher in patients with LH and are significantly higher with incorrect rotation of sites and with needle reuse. Glycated hemoglobin values are lower in patients who distribute their injections over larger injection areas and whose sites are inspected routinely. The frequencies of unexpected hypoglycemia and glucose variability are significantly higher in those with LH, those injecting into LH, those who incorrectly rotate sites, and those who reuse needles. Needles associated with diabetes treatment are the most commonly used medical sharps in the world. However, correct disposal of sharps after use is critically suboptimal. Many used sharps end up in public trash and constitute a major accidental needlestick risk. Use of these data should stimulate renewed interest in and commitment to optimizing injection practices in patients with diabetes.
    Study sites: 423 centers in 42 countries (Malaysia contributed 51 patients from two hospital study sites)
    Matched MeSH terms: Insulin/administration & dosage*
  10. Kadir A, Mokhtar MT, Wong TW
    J Pharm Sci, 2013 Dec;102(12):4353-63.
    PMID: 24258282 DOI: 10.1002/jps.23742
    The relationship of high and low molecular weight mannuronic acid (M)- and guluronic acid (G)-rich alginate nanoparticles as oral insulin carrier was elucidated. Nanoparticles were prepared through ionotropic gelation using Ca(2+) , and then in vitro physicochemical attributes and in vivo antidiabetic characteristics were examined. The alginate nanoparticles had insulin release retarded when the matrices had high alginate-to-insulin ratio or strong alginate-insulin interaction via OH moiety. High molecular weight M-rich alginate nanoparticles were characterized by assemblies of long polymer chains that enabled insulin encapsulation with weaker polymer-drug interaction than nanoparticles prepared from other alginate grades. They were able to encapsulate and yet release and have insulin absorbed into systemic circulation, thereby lowering rat blood glucose. High molecular weight G- and low molecular weight M-rich alginate nanoparticles showed remarkable polymer-insulin interaction. This retarded the drug release and negated its absorption. Blood glucose lowering was, however, demonstrated in vivo with insulin-free matrices of these nanoparticles because of the strong alginate-glucose binding that led to intestinal glucose retention. Alginate nanoparticles can be used as oral insulin carrier or glucose binder in the treatment of diabetes as a function of its chemical composition. High molecular weight M-rich alginate nanoparticles are a suitable vehicle for future development into oral insulin carrier.
    Matched MeSH terms: Insulin/administration & dosage*
  11. Chellappan DK, Yenese Y, Wei CC, Chellian J, Gupta G
    J Environ Pathol Toxicol Oncol, 2017;36(4):283-291.
    PMID: 29431061 DOI: 10.1615/JEnvironPatholToxicolOncol.2017020182
    Oral delivery of insulin is one of the most promising and anticipated areas in the treatment of diabetes, primarily because it may significantly improve the quality of life of diabetics who receive insulin regularly. Several problems have been reported regarding the subcutaneous delivery of insulin, ranging from cardiovascular complications to weight gain. One of the approaches to overcoming these issues is to administer insulin through the oral route. However, there are several challenges in developing an oral route for insulin delivery; insulin has extremely poor bioavailability and a low diffusion rate through the mucus layer. A wide range of oral insulin delivery techniques have recently been researched, ranging from nanoparticles to liposomes, self-emulsifying systems, and hydrogels. These techniques have shown promising potential in the oral delivery of insulin. This review considers the current literature on the advances and challenges in the development of oral insulin.
    Matched MeSH terms: Insulin/administration & dosage*
  12. Wong TW
    J Drug Target, 2010 Feb;18(2):79-92.
    PMID: 19968567 DOI: 10.3109/10611860903302815
    The possibility of administering insulin orally in replacement of painful subcutaneous route has been investigated over years but with varying degree of success. Nanoparticles, microparticles, hydrogel, capsule, tablet, and film patch are designed to deliver insulin orally. They are largely formulated with polymeric adhesive, protease inhibitor, insulin aggregation inhibitor, and functional excipients to induce transcellular, paracellular, Peyer's patches, or receptor-mediated transport of insulin in gastrointestinal tract. Superporous matrix, intestinal patches, and charged-coupled micromagnet microparticles are recent formulation strategies to promote oral insulin absorption. The formulation emphasizes on assembly of insulin and excipients into a physical structure which provides an element of drug targeting to maintain stability and increase bioavailability of insulin. The overview of various strategies applied in oral insulin delivery system design denotes the significance of mucoadhesiveness whereby a prolonged retention of dosage form in intestinal tract translates to cumulative insulin release and absorption, overcoming the intestinal transport capacity limit. Synthesis and use of mucoadhesive excipients, chemical modification of insulin to promote its physicochemical and biological stability for encapsulation in dosage form with prolonged retention characteristics and identification of potential insulin adjuncts are efforts needed to accelerate the speed of obtaining a functional oral insulin delivery system.
    Matched MeSH terms: Insulin/administration & dosage*
  13. Loh HH, Lim LL, Loh HS, Yee A
    J Diabetes Investig, 2019 Nov;10(6):1490-1501.
    PMID: 30938074 DOI: 10.1111/jdi.13054
    AIMS/INTRODUCTION: Although patients with type 1 diabetes are medically exempt, many insist on fasting during Ramadan. Multiple daily insulin injections (MDI), premixed insulin and continuous subcutaneous insulin infusion (CSII) are commonly used. To date, little is known about the safety of Ramadan fasting in these patients.

    MATERIALS AND METHODS: We pooled data from 17 observational studies involving 1,699 patients treated with either CSII or non-CSII (including premixed and MDI) regimen. The study outcomes were the frequencies of hypoglycemia, hyperglycemia and/or ketosis. Given the lack of patient-level data, separate analyses for premixed and MDI regimen were not carried out.

    RESULTS: The CSII-treated group (n = 203) was older (22.9 ± 6.9 vs 17.8 ± 4.0 years), and had longer diabetes duration (116.7 ± 66.5 vs 74.8 ± 59.2 months) and lower glycated hemoglobin (7.8 ± 1.1% vs 9.1 ± 2.0%) at baseline than the non-CSII-treated group (n = 1,496). The non-CSII-treated group had less non-severe hypoglycemia than the CSII-treated group (22%, 95% CI 13-34 vs 35%, 95% CI 17-55). Of the non-CSII-treated group, 7.1% (95% CI 5.8-8.5) developed severe hypoglycemia, but none from the CSII-treated group did. The non-CSII-treated group was more likely to develop hyperglycemia (12%, 95% CI 3-25 vs 8.8%, 95% CI 0-31) and ketosis (2.5%, 95% CI 1.0-4.6 vs 1.6%, 95% CI 0.1-4.7), and discontinue fasting (55%, 95% CI 34-76 vs 31%, 95% CI 9-60) than the CSII-treated group.

    CONCLUSIONS: The CSII regimen had lower rates of severe hypoglycemia and hyperglycemia/ketosis, but a higher rate of non-severe hyperglycemia than premixed/MDI regimens. These suggest that appropriate patient selection with regular, supervised fine-tuning of the basal insulin rate with intensive glucose monitoring might mitigate the residual hypoglycemia risk during Ramadan.

    Matched MeSH terms: Insulin/administration & dosage*
  14. Lim HP, Tey BT, Chan ES
    J Control Release, 2014 Jul 28;186:11-21.
    PMID: 24816070 DOI: 10.1016/j.jconrel.2014.04.042
    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
    Matched MeSH terms: Insulin/administration & dosage
  15. Harjoh N, Wong TW, Caramella C
    Int J Pharm, 2020 Jun 30;584:119416.
    PMID: 32423875 DOI: 10.1016/j.ijpharm.2020.119416
    Inhaled/oral insulin have been investigated as an alternative to injectable insulin, but are met with unsatisfactory outcomes. Transdermal administration bears several advantages unmet by inhalation/oral delivery, but macromolecular drugs permeation is poor. This study explored microwave to elicit transdermal insulin permeation, and compared against conventional permeation enhancers (fatty acids) in vitro/in vivo. The transdermal insulin permeation was promoted by microwave (2450 MHz/1 mW) > oleic acid (monounsaturated) ~ linoleic acid (double unsaturated bonds). The linolenic acid (triple unsaturated bonds) or combination of microwave/fatty acid reduced skin insulin permeation. Transdermal insulin permeation enhancement was attributed to epidermal lipid bilayer fluidization (CH) and corneocyte shrinkage due to keratin condensation (OH/NH, CO), which had aqueous pore enlarged to facilitate insulin transport. Its reduction by linolenic acid, a molecularly larger and rigid fatty acid with higher surface tension, was due to reduced fatty acid permeation into epidermis and minimal skin microstructural changes. The oleic acid, despite favoured skin microstructural changes, did not provide a remarkably high insulin permeation due to it embedded in skin as hydrophobic shield to insulin transport. Microwave penetrates skin volumetrically with no chemical residue retention. It alone promoted insulin absorption and sustained blood glucose level reduction in vivo.
    Matched MeSH terms: Insulin/administration & dosage*
  16. Hasan UA, Mohd Hairon S, Yaacob NM, Daud A, Abdul Hamid A, Hassan N, et al.
    PMID: 31514391 DOI: 10.3390/ijerph16183356
    Background: Structured education is needed to cultivate safe sharp disposal behavior among diabetic patients. Thus, this study aimed to assess the effectiveness of the Diabetes Community Sharp Disposal Education Module in improving knowledge and sharp disposal practice among Malaysian Type 2 diabetic patients. Methods: This quasi-experimental study was conducted at primary health clinics in two districts in Kelantan, a state in the North-East Region of Peninsular Malaysia. A total of 132 Type 2 diabetic patients on insulin therapy were involved, with 68 participants in each control and intervention group. The health education intervention was based on the validated Diabetes Community Sharp Disposal Education Module. The knowledge and practices were measured using a validated questionnaire at baseline, one month, and three months after the intervention. Results: There was a significant increment in the mean knowledge score for intervention group; from baseline to one month follow up and from baseline to three months follow up [Greenhouse-Geisser; F(1.5, 199.7) = 62.38, p < 0.001; effect size (η2) = 0.318]. Intervention group had significantly higher mean knowledge score as compared to control group; at one month and three months follow up [F(1, 134) = 17.38, p < 0.001; effect size (η2) = 0.115]. There was a statistically significant increment in the proportion of participants in the intervention group who practiced the proper community sharp disposal method over time, X2(2) = 52.061, p < 0.001. Conclusions: The Diabetes Community Sharp Disposal Education Module was an effective health education tool to improve knowledge and encourage Malaysian diabetic patients to engage with proper sharp disposal practices.
    Matched MeSH terms: Insulin/administration & dosage*
  17. Todd AL, Ng WY, Lui KF, Thai AC
    Intern Med J, 2004 Jan-Feb;34(1-2):24-30.
    PMID: 14748910 DOI: 10.1111/j.1444-0903.2004.00482.x
    BACKGROUND: Circulating antibodies to glutamic acid decarboxylase (GADab) and tyrosine phosphatase-like molecule IA-2 (IA-2ab) are major indicators for auto-immune destruction of pancreatic islet cells. They identify a majority of Caucasians with type 1 diabetes and approximately 50% of Asians, providing evidence of an idiopathic aetiology in the latter. The present study investigated these autoantibodies in a mixed ethnic group.
    METHODS: Hospital clinic patients with clinically defined type 1 (n = 93) and type 2 (n = 300) diabetes and representing Singapore's major ethnic groups--Chinese, Indians and Malays--were studied. GADab and IA-2ab frequencies, and association of autoimmunity status with clinical and biochemical profiles were analysed.
    RESULTS: Radio-immunoprecipitation assays detected either or both antibodies (seropositivity) in 41.9% of subjects with type 1 diabetes. GADab was detected in 36.6% and IA-2ab in 23.7% of type 1 diabetics. Prevalence of IA-2ab showed a reduction in frequency with disease duration (P = 0.026). In clinical type 2 diabetics, seropositivity was 10.0% with higher frequency in Malays (17.5%) than Chinese (9.7%) and Indians (4.5%). Multivariate analysis revealed that low fasting C-peptide was associated with seropositivity (odds ratio (OR) = 0.15; 95% confidence interval (CI) = 0.04-0.58). A significant relationship (OR = 13.5; 95% CI = 5.0-36.7) between insulin requirement and duration (>5 years) was also revealed. In patients with type 2 diabetes there was a trend of gradual progression to insulin dependency. However, there was considerable variation in body mass index between ethnic subgroups of type 2 diabetics, particularly for Chinese (mean (SD) = 26.0 (4.7)) and Malays (mean (SD) = 29.2 (5.9); P < 0.001).
    CONCLUSIONS: Presence of both antibodies in our mixed ethnic group of type 1 diabetes patients was much lower than in Caucasians. Significant numbers of patients were seronegative for antibodies. Influences due to ethnicity and adiposity would require further investigations.
    Matched MeSH terms: Insulin/administration & dosage
  18. Lee YK, Lee PY, Ng CJ, Teo CH, Abu Bakar AI, Abdullah KL, et al.
    Inform Health Soc Care, 2018 Jan;43(1):73-83.
    PMID: 28139158 DOI: 10.1080/17538157.2016.1269108
    This study aimed to evaluate the usability (ease of use) and utility (impact on user's decision-making process) of a web-based patient decision aid (PDA) among older-age users. A pragmatic, qualitative research design was used. We recruited patients with type 2 diabetes who were at the point of making a decision about starting insulin from a tertiary teaching hospital in Malaysia in 2014. Computer screen recording software was used to record the website browsing session and in-depth interviews were conducted while playing back the website recording. The interviews were analyzed using the framework approach to identify usability and utility issues. Three cycles of iteration were conducted until no more major issues emerged. Thirteen patients participated: median age 65 years old, 10 men, and nine had secondary education/diploma, four were graduates/had postgraduate degree. Four usability issues were identified (navigation between pages and sections, a layout with open display, simple language, and equipment preferences). For utility, participants commented that the website influenced their decision about insulin in three ways: it had provided information about insulin, it helped them deliberate choices using the option-attribute matrix, and it allowed them to involve others in their decision making by sharing the PDA summary printout.
    Study site: urban tertiary teaching hospital outpatient clinic in Malaysia (primary care clinic, University Malaya Medical Centre, UMMC, Kuala Lumpur, Malaysia)
    Matched MeSH terms: Insulin/administration & dosage*
  19. Norlinah MI, Hamizah R, Md Isa SH, Wan Nazaimoon WM, Khalid BA
    Indian J Med Sci, 2009 Apr;63(4):131-8.
    PMID: 19414982
    BACKGROUND: The role of endothelial injury and circulating adhesion molecule in the development and progression of diabetic peripheral neuropathy in the long-term has been established previously.
    AIMS: To study the effects of short-term glycemic control using insulin and oral hypoglycemic agent therapy (OHA) on the peroneal nerve function and vascular cell adhesion molecule-1 (VCAM-1) and advanced glycation endproducts (AGE) levels in type 2 diabetic patients.
    SETTINGS AND DESIGN: A randomized controlled study involving poorly controlled (HbA1c, 7.5%-11%) type 2 diabetic patients attending the endocrinology outpatient center in a tertiary hospital in Kuala Lumpur.
    MATERIALS AND METHODS: Twenty-nine patients were randomized to receive insulin (n=15) or OHA (n=14) for 8 weeks. The glycemic variables (HbA1c, fasting plasma glucose [FPG], fructosamine), VCAM-1, serum AGE and the peroneal motor conduction velocity (PMCV) were measured at baseline and at 4-week intervals.
    STATISTICAL ANALYSIS USED: Paired 't' test or Kruskal Wallis test; and the unpaired 't' test or Mann-Whitney U test were used for within-group and between-group analyses, respectively. Correlation was analyzed using Spearman's correlation coefficient.
    RESULTS: Within-group analysis showed significant progressive improvement in HbA1c at weeks 4 and 8 in the insulin group. The PMCV improved significantly in both groups by week 8, and by week 4 (P = 0.01) in the insulin group. PMCV correlated negatively with VCAM-1 (P = 0.031) and AGE (P = 0.009) at week 8.
    CONCLUSION: Aggressive glycemic control with insulin improves the peroneal nerve function within 4 weeks. Improvement in the serum VCAM-1 and AGE levels correlated significantly with improvement in peroneal nerve conduction velocity only in the insulin group.
    Study site: Tertiary endocrinology outpatient center in Kuala Lumpur, Malaysia
    Matched MeSH terms: Insulin/administration & dosage
  20. Sheshala R, Peh KK, Darwis Y
    Drug Dev Ind Pharm, 2009 Nov;35(11):1364-74.
    PMID: 19832637 DOI: 10.3109/03639040902939213
    AIM: The aim of this study was to prepare insulin-loaded poly(lactic acid)-polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model.
    METHODS: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin 30/70 as a reference product in streptozotocin-induced diabetic rats.
    RESULTS: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 microm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix.
    CONCLUSIONS: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.
    Matched MeSH terms: Insulin/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links